下转换材料 β —NaYF₄: Tb³⁺, Yb³⁺的水热法合成和发光性质研究

姜桂铖¹,韦先涛¹,王林香^{1,2},王晓纯¹,陈永虎¹,尹 民^{1*}

1. 中国科学技术大学物理系,安徽 合肥 230026
2. 新疆师范大学物理系,新疆 乌鲁木齐 830054

摘 要 利用水热法合成了粉末发光材 NaYF₄: Tb³⁺, Yb³⁺。分别用 X 射线衍射(XRD), 光致发光谱(PL) 和激发谱(PLE)测试了合成材料的物相结构和发光性质。研究结果表明:合成的 NaYF₄: Tb³⁺, Yb³⁺ 材料 为六方相的晶体, 无立方相的。改变 Tb³⁺和 Yb³⁺的掺杂浓度后晶格结构没有变化, 说明离子 Tb³⁺和 Yb³⁺ 取代的是 Y³⁺离子的晶格位置。在 355 nm 脉冲激光激发下, 检测到了 Tb³⁺的⁵D₃→⁷F_J(J=5-0)和⁵D₄→ ⁷F_J(J=6,5,4,3) 可见波段特征发射光和 Yb³⁺950~1050 nm (${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$)的近红外发光, 研究了可见 和近红外的发射强度随 Yb³⁺掺杂浓度的变化, 表明 Tb³⁺和 Yb³⁺之间存在能量传递,其可能的能量传递方 式是共合作能量传递过程。当 Tb³⁺和 Yb³⁺的掺杂摩尔浓度分别是 1 mol%和 6 mol% 时具有最强的近红外 发射。

关键词 水热法;下转换;共合作能量传递 中图分类号:O482.3 文献标识码:A DOI:10.3964/j.issn.1000-0593(2011)02-0331-04

引 言

近年来,下转换(DC)材料引起了人们的广泛关注。下转 换发光材料可以通过调制太阳光谱,降低硅太阳能电池的热 损耗,提高能量转化效率。下转换材料一般都是离子双掺 杂,即 Re³⁺(Tb³⁺, Pr³⁺,Tm³⁺, Ce³⁺, Eu²⁺)和 Yb³⁺的组 合,由紫外光激发 Re³⁺,通过交叉弛豫或共合作能量传递把 激发能传递给 Yb³⁺,从而得到对应 Yb³⁺²F_{5/2}→²F_{7/2}跃迁的 950~1 100 nm 的近红外发光,该波段的近红外光对应的能 量刚好与硅的禁带宽度匹配。利用下转换可以使太阳能电池 能量转化效率的 Shockley-Queisser 极限从 30.9% 提高到 38.6%^[1,2]。荷兰 Vergeer 等^[3] 首次用 489 nm 光激发材料 YPO₄: Tb³⁺, Yb³⁺ 实现了近红外量子剪裁发射,之后在 Y₂O₃: Tb³⁺, Yb^{3+[4]}, NaYF₄: Pr³⁺, Yb^{3+[5]}, YPO₄: Tm³⁺, Yb^{3+[6]}, B₂O₃-BaO-CaO-La₂O₃: Ce³⁺, Yb^{3+[7]}, Na₂O-Al₂O₃-B₂O₃: Eu²⁺, Yb^{3+[8]}等材料体系都观测到了近 红外下转换发光现象。

相对于氧化物,氟化物在很宽的光谱段都是透明的,并

且由于其声子能量小、多声子弛豫率低,从而发光效率较高,更有利于实现能量下转换。 $NaYF_4$ 是很好的发光材料基质,结构有立方相和六方相两种,研究结果表明稀土离子掺杂六方相 $NaYF_4$ 比立方相的发光更有效 $^{[9,10]}$ 。本文通过水热法制备了六方相的 $NaYF_4$: Tb^{3+} , Yb^{3+} 下转换材料,测试了样品的 X 射线衍射(XRD)谱,光致发光谱(PL)和激发谱(PLE),探索了 Tb^{3+} 和 Yb^{3+} 之间能量传递机理。

1 实 验

 Y_2O_3 (分析纯), Tb_2O_5 (分析纯), Yb_2O_3 (分析纯)按一 定化学计量比混合溶于稀硝酸, 按摩尔比 NH₄HF: NaF: RE³⁺(RE³⁺为 Y³⁺, Tb³⁺, Yb³⁺ 三种阳离子摩尔量的和)为 10:2:1 量取 NH₄HF 和 NaF, 并将其混合溶于蒸馏水且搅 拌均匀, 再把得到的稀土混合溶液倒入氟化物的混合水溶液 中, 用氨水调节其 pH 值至 9, 搅拌均匀后放入聚四氟乙烯 容器中, 将聚四氟乙烯容器放人不锈钢反应釜中。把不锈钢 反应釜置于烘箱中, 在 200 ℃下晶化 24 h 后, 将得到的反应 物过滤、洗涤, 在 80 ℃下烘干, 便得到了样品粉末材料。

收稿日期: 2010-04-21,修订日期: 2010-08-08

基金项目:国家自然科学基金项目(10774140,10904139),国家自然科学基金国际(地区)合作与交流项目(50711120504),中国科学院知识 创新工程重要方向项目(KJCX2-YW-M11),高等学校博士学科点专项科研基金项目(20060358054)和安徽省人才开发基金项目 (2007Z021)资助

作者简介:姜桂铖,1984年生,中国科学技术大学物理系博士研究生 e-mail:gcjiang@mail.ustc.edu.cn *通讯联系人 e-mail:yinmin@ustc.edu.cn 样品的 XRD 是用日本玛珂公司产的 18 kW JJG009-1996 转靶 X 射线多晶体衍射仪测定。样品的微观结构是用 美国 FEI 电子光学公司产的 JY/T 010-1996 分析型扫描电子 显微镜测得。355 nm 紫外激发光源使用的是一台重复频率 为 10 Hz 的 YAG: Nd 激光器的三倍频激光输出,可见光发 射光谱的测量使用的是 Jobin-Yvon 的 HRD1 型双光栅单色 仪,输出信号由 Hamamtsu 公司的 R928 型光电倍增管采集。 近红外发射光谱的测量使用的是 Zolix 的 SBP750 型单色仪, 输出信号由 Acton 公司的 ID-441-C 型砷化铟镓近红外探测 器采集。从探测器采集的信号再经 EG&G 7265 DSP 锁相放 大器处理后储存于计算机中。所有的测量均在室温下进行。

2 结果与讨论

图 1 给出了 NaYF₄ 掺杂 Tb³⁺的摩尔浓度是 1%, Yb³⁺ 的浓度分别是 0%, 6%, 8%的 XRD 图。图中所有衍射峰都 和标准卡片^[11]相符, 没有任何杂相峰, 说明我们成功制备了 六方相的 NaYF₄。六方相 NaYF₄ 属于 p63/m 空间群, 其结 构单元有三个阳离子格位, 一个是 Y³⁺的, 一个是 Y³⁺和 Na³⁺ 共同的, 第三个格位是 Na³⁺的^[5]。从图中可以看到改 变掺杂稀土的浓度基本上不影响材料的结构, 这是因为 Tb³⁺(0, 092 nm)和 Yb³⁺(0, 086 nm)离子的半径与 Y³⁺离子 (0, 089 nm)的相近, 掺入稀土离子 Tb³⁺和 Yb³⁺取代的是 Y³⁺的晶格位置, 对晶格参数影响不大。

图 2(a) 所示为 NaYF₄: Tb³⁺1%, Yb³⁺6% 样品监测 488 nm 的激发谱,激发谱由 341, 349, 353, 359, 368, 378 nm 六个峰组成,它们来源于的 Tb³⁺的基态到 4f 能态的跃 迁,从图中可看出, 355 nm 可以有效激发样品。(b)图中 400 ~475 nm 的发射峰相应于 Tb³⁺的⁵ $D_3 \rightarrow$ ⁷ F_J (J = 5-0)跃迁, 由于⁵ D_3 的发射很容易通过 Tb³⁺(⁵ D_3) + Tb³⁺(⁷ F_6) → Tb³⁺(⁵ D_4) + Tb³⁺(⁷ F_6)交叉弛豫过程产生浓度猝灭,所以 当 Tb³⁺的浓度过高时,它会把能量传递给周围相邻的离子。 而峰值位于 489, 542, 584, 619 nm 的发射则来源于 Tb³⁺的 ⁵ $D_4 \rightarrow$ ⁷ F_J (J = 6, 5, 4, 3)跃迁,其中以位于 542 nm 左右的 ⁵ $D_4 \rightarrow$ ⁷ F_5 跃迁发射峰最强,这是因为⁵ $D_4 \rightarrow$ ⁷ F_5 的能级跃迁 属于电偶极和磁偶极允许跃迁。图中所有的发射光谱是在同 一条件下测得,强度具有可比性,样品 untreated 是未经水热 处理的 NaYF₄: Tb³⁺ 1%, Yb³⁺ 8% 前驱物粉末。从图中可 以看到,当 Tb³⁺ 的浓度不变时,掺杂浓度为 6% Yb³⁺ 时 Tb³⁺ 的发光反而比不掺杂 Yb³⁺ 时 Tb³⁺ 的发光更强,原因可 能是由于当掺入少量的 Yb³⁺ 时,使得 Tb³⁺ 的分散性更好, 减弱了相邻的 Tb³⁺ 之间的能量传递,增强了 Tb³⁺ 的发光。 而后随 Yb³⁺ 的浓度增加而 Tb³⁺ 的发光减弱是因为 Tb³⁺ 把 能量传递给了 Yb³⁺。没有经水热法处理 NaYF₄: Tb³⁺, Yb³⁺ 的粉末基本没有 Tb³⁺ 的特征发射。

从图 3 可以看到,用 355 nm 脉冲激光激发样品,未经水 热处理的 NaYF₄: Tb³⁺1%, Yb³⁺8% 粉末无近红外发光, 当 NaYF₄ 中只掺 Tb³⁺时也没有近红外发光,而当 NaYF₄ 中 同时掺入 Tb³⁺和 Yb³⁺时检测到 Yb³⁺950~1 050 nm(²F_{5/2} →²F_{7/2})近红外发光。钠和锂属同一主族,Yb³⁺掺杂 LiYF₄ 和 NaYF₄ 电荷迁移态的能级位置也应相似,355 nm 的激光 不足以激发 NaYF₄ 中 Yb³⁺ 电荷迁移态^[12],所以检测到 Yb³⁺的近红外发光只可能是通过 Tb³⁺向 Yb³⁺的能量传 递^[3],即发生了近红外下转换。图 3 中 Yb³⁺有 976 和 1 001 nm 两个发射峰,这是由于从两个不同的斯塔克多重态²F_{5/2} 向最低的斯塔克多重态²F_{7/2}跃迁引起的^[13],和文章献[3]中 Yb³⁺的近红外发光相比,峰值变宽,可能是由于近红外发光 比较弱,仪器的分辨率低。从插图中可以看到,随 Yb³⁺的浓度 是 6%时近红外发光最强。发光强度减弱是由于 Yb³⁺的浓度

猝灭, 猝灭的原因主要是能量向缺陷迁移。

Fig 3 NIR emission spectra of NaYF₄ : Tb³⁺, Yb³⁺ samples excited at 355 nm. Inset shows the dependence of the Yb³⁺ emission intensities on the Yb³⁺ doping concentration

上述实验显示了存在 Tb³⁺ 向 Yb³⁺ 能量传递,从 Tb³⁺ 和 Yb³⁺ 的 Dieke 能级图^[14, 15] 可知, Yb³⁺ 只有一个位于 10 000 cm⁻¹ 的多重激发态² $F_{5/2}$,远低于 Tb³⁺ 的⁵ D_4 能级,因此 Tb³⁺ 和 Yb³⁺ 不可能发生共振能量传递,只可能是在 Tb³⁺ ⁵ $D_4 \rightarrow ^7 F_J$ 和 Yb³⁺² $F_{5/2} \rightarrow ^2 F_{7/2}$ 之间发生二阶能量传递,可能 的共合作能量传递如图 4 所示,在 355 脉冲激光激发下,紫 外光把 Tb³⁺ (4 f^8)激发到 4f 能级中的较高能级,然后无辐 射弛豫到 Tb³⁺ 的⁵ D_3 和⁵ D_4 能级, $^5 D_3 \rightarrow ^7 F_J$ ($J = 0 \sim 6$)跃迁 产生 $\lambda < 474$ nm 的可见光, $^5 D_4 \rightarrow ^7 F_J$ (J = 6, 5, 4, 3)跃迁产 生 489,542,584,619 nm 的可见光,同时 Tb³⁺ 的⁵ D_4 能级 与基态的能量差恰好 2 倍于 Yb³⁺ 的² $F_{5/2}$ 向² $F_{7/2}$ 跃迁的能 量,可以发生 Tb³⁺ ($^5 D_4$)→2 Yb³⁺ ($^2 F_{5/2}$)共合作能量传递。 但在实验中观测到的 Yb³⁺ 950~1 050 nm($^2 F_{5/2} \rightarrow ^2 F_{7/2}$)近 红外发光强度很弱,原因可能有两个,一是二阶能量传递概 率比一阶能量传递概率低 10⁴ ~10⁸[4],大部分能量在 Tb³⁺

References

- [1] Trupke T, Green M A, Wurfel P. J. Appl. Phys., 2002, 92: 1668.
- [2] Trupke T, Green M A, Würfel P. J. Appl. Phys., 2002, 92: 4117.
- [3] Vergeer P, Vlugt T J H, Kox M H F, et al. Phys. Rev. B, 2005, 71: 014119.
- [4] Yuan Junlin, Zeng Xiaoyan, Zhao Jingtai, et al. J. Phys. D: Appl. Phys., 2008, 41: 105406.
- [5] Chen X P, Huang X Y, Zhang Q Y. J. Appl. Phys., 2009, 106: 063518.
- [6] Xie Lechun, Wang Yuhua, Zhang Huijuan. Appl. Phys. Lett., 2009, 94: 061905.
- [7] Chen Daqin, Wang Yuansheng, Yu Yunlong, et al. J. Appl. Phys., 2008, 104: 116105.
- [8] Zhou Jiajia, Zhuang Yixi, Ye Song, et al. Appl. Phys. Lett., 2009, 95: 141101.
- [9] Li C X, Quan Z W, Yang J, et al. Inorg. Chem., 2007, 46: 6329.
- [10] WANG Meng, MI Cong-cong, WANG Dan, et al(王 猛,密丛丛,王 单,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2009, 29(12): 3327.
- [11] JCPDS Card No. 16-0334.
- [12] van Pieterson L, Heeroma M, de Heer E, et al. Journal of Luminescence, 2000, 91: 177.
- [13] Chen D Q, Wang Y S, Yu Y L, et al. Mater. Chem. Phys., 2007, 101: 464.
- [14] Dieke G H. Spectra and Energy Levels of Rare Earth Ions in Crystals. New York: Interscience Pub. , 1968. 401.
- [15] Dieke G H, Crosswhite H M. Appl. Opt., 1963, 2: 675.

Fig 4 Schematic energy level diagram of Tb³⁺ and Yb³⁺ with transitions that may be responsible for the cooperative energy transfer

之间发生⁵ $D_4 \rightarrow {}^5D_4$ 的能量迁移。二是 Tb³⁺⁵ D_4 能级向低能 级跃迁的概率远大于发生共合作能量传递的概率。

3 结 论

在 pH 值为 9、水热温度为 200[°]C 和水热时间为 24 h 条 件下,成功制备了 NaYF₄ 稀土掺杂样品的六方相微米晶。在 基质 NaYF₄ 中 Tb³⁺的⁵D₄→⁷F_J (J=6,5,4,3)跃迁发射峰 位于 489,542,584,619 nm,其中以位于 542 nm 的⁵D₄→ ⁷F₅ 跃迁发射峰最强。在 355 nm 紫外光激发下,通过 NaYF₄ 中单掺 Tb³⁺ 和双掺 Tb³⁺,Yb³⁺ 近红外发光的比较,发现存 在 Tb³⁺(⁵D₄)→2 Yb³⁺(²F_{5/2})的能量传递,且很可能是共合 作的能量传递方式。当 Tb³⁺的浓度是 1%,Yb³⁺ 是 6% 时, 近红外发光最强。

Preparation and Luminescence of Down–Conversion Material $\beta-NaYF_4$: Tb^{3+} , Yb^{3+}

JIANG Gui-cheng¹, WEI Xian-tao¹, WANG Lin-xiang^{1, 2}, WANG Xiao-chun¹, CHEN Yong-hu¹, YIN Min^{1*}

1. Department of Physics, University of Science and Technology of China, Hefei 230026, China

2. Department of Physics, Xinjiang Normal University, Urumqi 830054, China

Abstract NaYF₄ : Tb³⁺, Yb³⁺ down-conversion (DC) phosphors were synthesized by hydrothermal method. X-ray diffraction (XRD), photoluminescence (PL) and photoluminescence excitation (PLE) spectra were used to characterize the samples. Experiment results revealed that samples of NaYF₄ : Tb³⁺, Yb³⁺ crystallized in hexagonal shape without cubic shape. When the doping concentration of Tb³⁺ and Yb³⁺ was altered, the lattice structure of samples did not change, indicating that the Tb³⁺ and Yb³⁺ ions are completely dissolved in the NaYF₄ host lattice by substitution for the Y³⁺. The emission from ${}^5D_4 \rightarrow {}^7F_6$ (489 nm), ${}^5D_4 \rightarrow {}^7F_5$ (542 nm), ${}^5D_4 \rightarrow {}^7F_4$ (584 nm), and ${}^5D_4 \rightarrow {}^7F_3$ (619 nm) of Tb³⁺ ions was observed, in which the dominant emission was at 542 nm. With single Tb³⁺ and Yb³⁺ codoping, no near-infrared (NIR) emission was observed under excitation of 355 nm pulsed laser. However, while with Tb³⁺ and Yb³⁺ codoping, the NIR emission at around 950 ~1 100 nm from Yb³⁺ (${}^2F_{5/2} \rightarrow {}^2F_{7/2}$) was observed under the same excitation. The dependence of the visible and NIR-emissions on Yb³⁺ doping concentration has been investigated. These results show that there is energy transfer process between Tb³⁺ and Yb³⁺. Furthermore, it is a possible DC process through cooperative energy transfer from Tb³⁺ to Yb³⁺. When the doping concentration is 1% mol Tb³⁺ and 6% mol Yb³⁺ respectively, the intensity of NIR emission reaches its strongest.

Keywords Hydrothermal method; Down-conversion; Cooperative energy transfer

(Received Apr. 21, 2010; accepted Aug. 8, 2010)

* Corresponding author

敬告读者——《光谱学与光谱分析》已全文上网

从 2008 年第 7 期开始在《光谱学与光谱分析》网站(www.gpxygpfx.com)"在线期刊"栏内 发布《光谱学与光谱分析》期刊全文,读者可方便地免费下载摘要和 PDF 全文,欢迎浏览、检 索本刊当期的全部内容;并陆续刊出自 2004 年以后出版的各期摘要和 PDF 全文内容。2009 年起《光谱学与光谱分析》每期出版日期改为每月 1 日。

光谱学与光谱分析期刊社