Vol. 28 No. 10 Oct. 2011 p. 807

文章编号: 1006-2858(2011)10-0807-05

HPLC 法同时测定一清颗粒中黄芩苷等 8 种有效成分的含量

王远见1,李清2,赵娟娟2,陈晓辉2,毕开顺2

(1. 沈阳药科大学 中药学院 辽宁 沈阳 110016; 2. 沈阳药科大学 药学院 辽宁 沈阳 110016)

摘要:目的 建立 RP-HPLC 法同时测定一清颗粒中芦荟大黄素、大黄酸、大黄素、大黄酚、大黄素 甲醚、黄芩苷、汉黄芩素和盐酸小檗碱 8 种有效成分的含量。方法 采用 Kromasil C_{18} 色谱柱 (250 mm × 4.6 mm 5 μ m) 以乙腈-体积分数 0.1% 磷酸水(三乙胺调 pH 值至 3.0) 为流动相 梯度 洗脱; 检测波长为 254 nm 流速 1.0 mL•min ⁻¹ 柱温 30 $^{\circ}$ 。结果 芦荟大黄素、大黄酸、大黄素、大黄酚、大黄素甲醚、黄芩苷、汉黄芩素和盐酸小檗碱质量浓度分别在 1.800 ~ 36.20、14.25 ~ 285.1、4.500 ~ 90.0、1.780 ~ 35.60、4.300 ~ 85.0、48.20 ~ 963、1.700 ~ 34.00、28.60 ~ 572.5 mg·L ⁻¹ 内与峰面积呈 良好的线性关系 ($r \ge 0$.999 1),平均回收率 (n = 9)分别为 96.0%、98.0%、96.6%、97.0%、97.7%、97.0%、97.2%、98.0%。结论 该方法快速简便、灵敏、重现性好,可为一清颗粒的质量控制提供依据。

关键词:反相高效液相色谱法; 黄芩苷; 一清颗粒中图分类号: R 917 文献标志码: A

一清颗粒出自《金匮要略》的"泻心汤",由大 黄、黄芩和黄连三味中药组成,可泻火解毒,化湿 清热,可泻三焦实热。一清颗粒收载于《中华人 民共和国药典》2010年版一部,在经典古方的基 础上采用先进提取工艺精制而成。具有清火燥 湿 泻火解毒 化瘀止血之功效 对咽炎、牙龈炎及 扁桃体炎均有较好的疗效。临床上常用于治疗火 毒血热所致的身燥、目赤口疮、咽喉牙龈肿痛等 症[1]。现代研究表明,黄芩中黄酮类化合物、大 黄中蒽醌类衍生物和黄连中小檗碱等多种生物碱 都具有抗炎、抗病毒和抗氧化的作用[2-6]。而《中 华人民共和国药典》中对该制剂的质量控制仅以 黄芩苷为指标成分进行含量测定。近年来,多指 标成分的含量测定越来越多的应用于中药制剂的 质量控制 李奕等[7] 采用 HPLC 法同时测定一清 胶囊中黄芩苷、大黄酸和小檗碱的含量,田书霞 等[8] 采用 HPLC 法同时测定一清胶囊中 7 种有效 成分的含量 刘丹等[9] 采用毛细管电泳法测定一 清颗粒中7种有效成分的含量。为进一步控制该 颗粒制剂的质量,作者使用 HPLC 法同时测定一 清颗粒中8种有效成分的含量。结果证明,该方 法简单可行、准确、快速 可以用于该制剂的质量控 制。黄芩苷等8种有效成分的化学结构式见图1。

1 仪器与材料

AGILENT 1100 高效液相色谱仪(美国安捷 伦公司) SARTORIUS CP225D 分析天平(德国赛 多利斯公司)。

芦荟大黄素(aloe-emodin)、大黄酸(rhein)、大黄素(emodin)、大黄酚(physcion)和大黄素甲醚(chrysophanol)对照品(纯度质量分数均大于98.5%,成都曼思特生物科技有限公司),盐酸小檗碱对照品(berberine hydrochloride,批号110713-200910)、黄芩苷对照品(baicalin,批号110715-201016)(中国药品生物制品检定所),汉黄芩素对照品(wogonin,纯度质量分数大于98.0%,自制),甲醇、乙腈(色谱纯,山东禹王化学试剂厂),、磷酸、三乙胺(色谱纯,天津大茂化学试剂厂),水为重蒸水(自制)。

2 方法与结果

- 2.1 溶液的制备
- 2.1.1 对照储备液的制备 取经减压干燥的芦荟大黄素、大黄酸、大黄

收稿日期: 2011-04-11

作者简介: 王远见(1985-) 男(汉族),山东临沂人,硕士研究生,**E-mail** wyj19851002@126.com; 毕开顺(1956-),男(汉族),河北唐山人,教授,博士,主要从事中药现代化研究,**Tel**. 024-23986016, **E-mail** bikaishun@yahoo.com。

Fig. 1 Structures of berberine (1) aloe-emodin (2) ,rhein (3) ,emodin (4) ,chrysophanol (5) ,baicalin (6) ,wogonin (7) and physcion

素、大黄酚、大黄素甲醚、黄芩苷、汉黄芩素和盐酸小檗碱对照品适量,精密称定。分别加至 $50~\mathrm{mL}$ 量瓶中,用甲醇定容,制成质量浓度分别为 $36.20\,285.1\,90.0\,35.60\,85.0\,963\,34.00\,572.5~\mathrm{mg} \cdot \mathrm{L}^{-1}$ 的对照储备液。

2.1.2 供试溶液的制备

取一清颗粒 5 袋 研细 取粉末约 1.0 g 精密称定。置 50 mL 具塞锥形瓶中,精密量取 $0.1 \text{ mol} \cdot \text{L}^{-1}$ 盐酸-体积分数 80% 甲醇(体积比 1:100) 20 mL 加至锥形瓶中,密塞 称定质量。超声处理 60 min 冷却至室温,称定质量 ,用体积分数 80% 甲醇补足质量 摇匀 离心 经 $0.22 \text{ }\mu\text{m}$ 微孔滤膜过滤,取续滤液,备用。

2.1.3 阴性溶液的制备

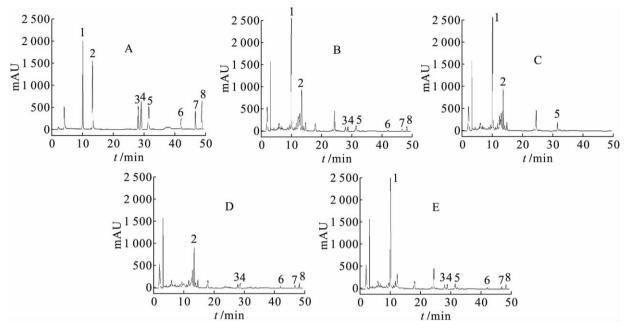
取黄连 165 g、大黄 500 g、黄芩 250 g 分别加水煎煮 2 次 1 次 1.5 h 1 次 1 h 合并煎液 滤过 , 滤液减压干燥至浸膏 ,与辅料混匀 ,制粒 ,得一清颗粒。按上述一清颗粒的制备工艺分别制备不含大黄、黄芩和黄连的阴性样品 ,按 "2.1.2"条方法制备阴性溶液 备用。

2.2 色谱条件与系统适用性试验

色谱柱: Kromasil C_{18} 柱(250 mm × 4.6 mm , 5 μm); 流动相: 乙腈(A) -体积分数 0.1% 磷酸水(三乙胺调 pH 值至 3.0 ,B) 梯度洗脱程序为 0 ~ 10 min 20% A、10 ~ 20 min 20% ~ 33% A、20 ~ 25 min 33% ~ 47% A、25 ~ 35 min 47% A、35 ~ 45 min 47% ~ 90% A、45 ~ 50 min 90% A; 流速: 1.0 mL•min $^{-1}$; 检测波长: 254 nm; 柱温: 30 $^{\circ}$ C; 进样量: 20 μL。在上述色谱条件下 ,各组分分离良

好,且不受药材中其他成分干扰,理论塔板数以黄芩苷计,不低于5000。色谱图见图2。

2.3 方法学考察


2.3.1 线性关系考察

精密量取各对照储备液 $0.5 \times 1.0 \times 2.0 \times 4.0 \times 8.0 \times 10 \text{ mL}$ 分别置于 10 mL 量瓶中 ,加甲醇至刻度 摇匀 ,即得不同质量浓度的对照溶液。按 "2.2"条色谱条件进行测定 ,以各对照品质量浓度(ρ ,mg • L $^{-1}$) 为横坐标 ,峰面积(A) 为纵坐标 ,绘制标准曲线。回归方程分别为: 芦荟大黄素 $A=4.254\times10^5\rho+11.41$ r=0.999 6; 大黄酸 $A=2.542\times10^5\rho+4.503$ r=0.999 9; 大黄素 $A=4.999\times10^5\rho-61.53$ r=0.999 9; 大黄素甲醚 $A=1.181\times10^5\rho+15.17$ r=0.999 6; 黄芩苷 $A=9.12\times10^4\rho+207$ 3 r=0.999 3; 汉黄芩素 $A=1.678\times10^6\rho-9.75$ r=0.999 9; 盐酸小檗碱 $A=1.678\times10^6\rho-9.75$ r=0.999 8。

结果表明,芦荟大黄素、大黄酸、大黄素、大黄酚、大黄素甲醚、黄芩苷、汉黄芩素和盐酸小檗碱进样的质量浓度分别在 $1.800 \sim 36.20$ 、 $14.25 \sim 285.1$ 、 $4.500 \sim 90.00$ 、 $1.780 \sim 35.60$ 、 $4.300 \sim 85.0$ 、 $48.20 \sim 963$ 、 $1.700 \sim 34.00$ 、 $28.60 \sim 572.5$ mg·L⁻¹内与峰面积呈良好的线性关系。

2.3.2 仪器精密度试验

分别取对照品储备液 1 mL 置于 10 mL 量瓶中 用甲醇稀释至刻度 摇匀 按"2.2"条色谱条件重复进样 6 次。结果芦荟大黄素、大黄酸、大黄素、大黄酚、大黄素甲醚、黄芩苷、汉黄芩素和盐酸

1—Baicalin; 2—Berberine hydrochloride; 3—Rhein; 4—Aloe-emodin; 5—Wogonin; 6—Emodin; 7—Physcion; 8—Chrysophanol

Fig. 2 HPLC chromatographic profiles of standard(A) sample(B) ,negative sample without rhubard(C) sample(B) ,negative sample without scutellaria(D) and negative sample without coptis(E)

小檗碱峰面积的 RSD 分别为 0.6%、0.7%、0.7%、0.8%、0.5%、0.4%、0.2%、0.3% 表明仪器精密度良好。

2.3.3 重复性试验

分别取一清颗粒粉末 6 份,每份约 1.0 g,精密称定。按"2.1.2"条方法制备供试溶液,按"2.2"条色谱条件进行测定。结果芦荟大黄素、大黄酸、大黄素、大黄酚、大黄素甲醚、黄芩苷、汉黄芩素和盐酸小檗碱含量的RSD分别为 2.7%、2.0%、1.9%、0.5%、2.4%、2.6%、2.2%、2.1%,表明方法的重复性良好。

2.3.4 稳定性试验

取供试溶液 在室温下放置 按 "2.2"条色谱条件分别在 0、2、4、6、8、12、24 h 进行分析测定。

结果芦荟大黄素、大黄酸、大黄素、大黄酚、大黄素 甲醚、黄芩苷、汉黄芩素和盐酸小檗碱在 $0 \sim 24 \text{ h}$ 峰面 积的 RSD 分别为 1.7%、2.0%、0.4%、1.4%、1.1%、2.0%、2.0% 表明供试品溶液在室温下 24 h 内稳定。

2.3.5 加样回收率试验

分别取一清颗粒粉末 9 份,每份约 0.5 g,精密称定。置 50 mL 具塞锥形瓶中,按制剂中芦荟大黄素、大黄酸、大黄素、大黄酚、大黄素甲醚、黄芩苷、汉黄芩素和盐酸小檗碱含有量的 50%、100%、150%分别加入各对照品,按"2.1.2"条方法制备低、中、高 3 种质量浓度溶液各 3 份,按"2.2"条色谱条件进样分析,计算回收率,结果见表 1。

Table 1 The recovery results of caicalin berberine hydrochloride rhein aloe-emodin wogonin emodin physion chrysophanolfor the determination of Yiqing granules (n = 9)

Component	$m_{ m sample}/{ m mg}$	$m_{ m added} / { m mg}$	$m_{ m found}$ / mg	$m_{ m found}/{ m mg}$ Average recovery/%		
Baicalin	2. 731	1. 300	1. 259			
	2. 680	2. 700	2. 615	97. 0	0.8	
	2. 708	4. 000	3. 881			
Berberine hydrochloride	0.657 9	0.343 2	0. 336 4			
	0. 644 5	0.629 8	0. 6172	98. 0	0. 5	
	0.664 1	0.916 0	0.898 0			

(to be continued)

Continued table 1							
Component	$m_{ m sample}/{ m mg}$	$m_{ m added}$ / $ m mg$	$m_{ m found}$ / mg	Average recovery/%	RSD/%		
Rhein	0. 321 1	0. 142 6	0. 139 8				
	0.3132	0. 313 6	0.3078	98. 0	1. 6		
	0. 310 9	0. 456 2	0. 447 1				
Aloe-emodin	0. 038 13	0.018 10	0. 017 38				
	0. 037 54	0.036 20	0. 034 75	96. 0	1. 2		
	0. 036 72	0.054 30	0. 052 12				
Wogonin	0. 017 79	0.008 50	0.008 261				
	0.018 03	0.017 00	0. 016 53	97. 2	0.6		
	0. 017 93	0. 025 50	0. 024 79				
Emodin	0.022 32	0.01080	0.01042				
	0. 021 81	0. 021 60	0.02089	96. 6	0.7		
	0. 021 58	0. 032 40	0. 032 31				
Physicon	0.095 6	0.005 34	0. 051 79				
	0.0998	0.01068	0.010 35	97. 0	0.8		
	0.010 33	0.016 02	0. 015 53				
Chrysophanol	0. 031 25	0. 014 45	0. 014 12				
	0. 028 94	0. 029 75	0. 029 06	97. 7	1. 7		
	0. 029 38	0.042 50	0.041 26				

2.4 供试品含量测定

取市售某厂家一清颗粒(每袋7.5 g)3 批,每批3份,每份约1.0g 精密称定。按"2.1.2"条方

法制备供试溶液,按"2.2"条色谱条件进样分析,记录样品色谱图,按外标法计算含量,结果见表2。

Table 2 The results of contents determination of Yiqing granules (mg·packed $^{-1}$ $\mu = 3$)

Batch	Baicalin	Berberine hydrochloride	Rhein	Aloe-emodin	Wogonin	Emodin	Physcion	Chrysophanol
100511	40. 20	9. 67	4. 69	0. 75	0. 27	0. 33	0. 15	0. 41
100105	38. 64	8. 77	4. 24	0. 54	0. 21	0. 23	0. 21	0.33
100503	36. 96	8. 95	4. 68	0. 64	0. 19	0. 21	0. 18	0.45

3 讨论

3.1 供试溶液制备方法的确定

作者采用单因素轮换法、对提取溶剂、提取方法、提取时间和提取溶剂体积依次进行考察。提取溶剂为水、体积分数 50% 甲醇、体积分数 70% 甲醇(体积 时醇、0.1 mol·L⁻¹盐酸-体积分数 70% 甲醇(体积比1:100)、体积分数 80% 甲醇、0.1 mol·L⁻¹盐酸-体积分数 80% 甲醇(体积比1:100)、甲醇和体积分数 70% 乙醇; 提取方法为超声、回流和冷浸; 提取时间为 15、30、60、90 min; 提取溶剂体积为物料量 10、20、50 倍。结果表明,以 0.1 mol·L⁻¹盐酸—体积分数 80% 甲醇(体积比1:100) 为提取溶剂,用量为物料的 20 倍量,超声提取 60 min 可提取完全。其中加盐酸酸化可使大黄中蒽醌类成分游

离充分 提高大黄中蒽醌类成分的提取效率。

3.2 流动相的选择

作者考察了甲醇-水、甲醇-磷酸水、乙腈-磷酸水和乙腈-磷酸水(三乙胺调 pH 值至为 3.0)。结果表明,乙腈-磷酸水(三乙胺调 pH 值至 3.0)系统可以使各组分色谱峰的峰形和分离度均达到要求。该方法为乙腈-水(缓冲盐)系统,便于使样品的酸性成分和碱性成分得到分离,峰形尖锐,由于大黄酸对流动相 pH 值较敏感,在 pH 值为 3.0时,大黄酸与其他成分的分离度最好。

3.3 检测波长的选择

使用二极管阵列检测器,通过对比芦荟大黄素、大黄酸、大黄素、大黄酚、大黄素甲醚、黄芩苷、汉黄芩素和盐酸小檗碱的紫外光谱图可知,芦荟大黄素、大黄酸、大黄素、大黄酚和大黄素甲醚均

在 220 nm 和 254 nm 处有强吸收,黄芩苷和汉黄芩素均在 278 nm 和 325 nm 处有强吸收,盐酸小檗碱在 265 nm 和 345 nm 处有强吸收。由于 8 种成分在 254 nm 处均有较好的响应,所以选择 254 nm作为检测波长。

参考文献:

- [1] 国家药典委员会. 中华人民共和国药典: 一部[M]. 北京: 中国医药科技出版社 2010: 402 403.
- [2] 侯家玉. 中药药理学[M]. 北京: 中国中医药出版社, 2005: 41-43.
- [3] 熊英 傅颖媛 况南珍. 黄芩苷抗白念珠菌作用及机制研究[J]. 中国药理学通报 2004 20(12):1044 1047.
- [4] 祁红. 大黄素的抗炎作用[J]. 中草药 ,1999 ,30(7): 522 524.

- [5] HUANG Shiang-suo, YEH Sheau-farn, HONG Chuang-ye. Effect of anthraquinone derivatives on lipid peroxidation in rat heart mitochondria: Structure-activity relationship [J]. Journal of Natural Products ,1995, 58(9): 1365-1371.
- [6] 张喜平. 大黄素的药理作用研究概况 [J]. 中国药理 学通报 2003,19(8):851-854.
- [7] 李奕 浒旭. HPLC 同时测定一清胶囊中黄芩苷、大黄酸和小檗碱的含量 [J]. 中成药 2005 28(2):155 157.
- [8] 田书霞,蒋晔. RP-HPLC 同时分离测定一清胶囊中7种有效成分[J]. 中成药 2006 28(2):185-188.
- [9] 刘丹,毋福海,曾承辉. 毛细管电泳法测定一清颗粒中七种成分的含量[J]. 中国医药工业杂志 2009 40 (11):840-843.

Simultaneous determination of aloe-emodin, rhein, emodin, physcion, chrysophanol, baicalin, wogonin, berberine hydrochloride in Yiqing granules by HPLC

WANG Yuan-jian¹, LI Qing², ZHAO Juan-juan², CHEN Xiao-hui², BI Kai-shun² (1. School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang 110016, China; 2. School of Pharmacy Shenyang Pharmaceutical University Shenyang 110016, China)

Abstract: Objective To establish an HPLC method for simultaneous determination of aloe-emodin ,rhein , emodin ,physcion ,chrysophanol ,baicalin ,wogonin ,berberine hydrochloride in Yiqing granules (traditional chinese medicine) . Methods Isolation of sample was achieved on a Kromasil C₁₈ column (250 mm × 4.6 mm 5 μm) . A mixture of acetonitrile and 0.1% phosphoric acid (adjust pH = 3.0 with triethylamine) with gradient elution was used as mobile phase. The analytes was detected at 254 nm ,and the column temperature was maintained at 30 °C. Results The linearity ranges of aloe-emodin ,rhein ,emodin ,physcion , chrysophanol , baicalin , wogonin , berberine hydrochloride were 1.800-36.20 mg • L⁻¹ , 14.25–285.1 mg•L⁻¹ ,4.500-90.0 mg•L⁻¹ ,1.780-35.60 mg•L⁻¹ ,4.300-85.0 mg•L⁻¹ ,48.20-963 mg•L⁻¹ ,1.700-34.00 mg•L⁻¹ and 28.60-572.5 mg•L⁻¹ ,respectively (r≥0.999 1) . The average recoveries (n = 9) of them were 96.0% ,98.0% ,96.6% ,97.0% ,97.7% ,97.0% ,97.2% and 98.0% ,respectively. Conclusions The method is fast simple sensitive and can be used for the quality control of Yiqing granules. Key words: HPLC; baicalin; Yiqing granule