黄铁矿氧化的原位衰减全反射红外光谱表征

张 平、陈永亨、刘 娟、王春霖

广州大学环境科学与工程学院,广州市污染控制与同位素应用技术重点实验室,广东广州 510006

摘 要 黄铁矿是自然界普遍存在的一种矿物,容易发生氧化反应,是酸性矿山废水 (AMD) 的主要来源。研究黄铁矿氧化有助于揭示其产生污染的机制。通过黄铁矿氧化生成硫酸,硫酸再与黄铁矿中所含碳酸盐 (钙) 反应生成二氧化碳这一设计实验,实现了黄铁矿在大气环境和水环境中氧化的原位衰减全反射红外光谱表征。通过对反应生成的 CO_2 进行原位表征,发现黄铁矿在空气和水中均存在明显的氧化作用,二者的氧化速率随时间而下降,差别在于,黄铁矿在水环境中的氧化速率下降较之在大气中显著,表明黄铁矿在水中的氧化较之在大气中要慢。在衰减全反射测量中, $2~350~{\rm cm}^{-1}$ 处表征 CO_2 的双吸收峰的选择性好,并可实现原位分析。

关键词 原位衰减全反射红外光谱; 黄铁矿; 氧化反应

中图分类号: 0657. 3; X502 文献标识码: A

DOI: 10 3964/j issn 1000 0593 (2008) 11-2554-03

引言

黄铁矿(FeS2) 是自然界普遍存在的一种矿物, 暴露在空 气中容易发生氧化反应、生成 硫酸、导致酸 性排放、是 酸性 矿山废水(АМД) 的主要来源。 随着黄铁矿的氧化溶解,其中 的重金属释放出来,又产生重金属污染。因此,黄铁矿氧化 一直是科技工作者关注的环境问题。研究黄铁矿及其氧化有 助于揭示其产生污染的机制、研究手段主要采用光电子能谱 (XPS)[13]。光电子能谱是表征表面化学状态及表面反应物 种的有效方法[47], 但是难以实现原位分析。前文[8] 利用漫 反射红外光谱探讨了黄铁矿表面氧化,获得了一些新信息, 而要实现原位表征也存在困难。ATR 是红外光谱分析方法 中的一种, 傅里叶变换红外光谱仪配备的 ATR 附件可替代 盐片和液体透射池、在界面固体薄膜领域得到了广泛的应 用[9-13],并且能够实现原位分析[14-17]。本文尝试采用衰减全 反射红外光谱(ATR FTIR) 对黄铁矿表面氧化进行了原位表 征。由于溶解氧的作用、黄铁矿在水环境中同样存在氧化反 应。然而、表征黄铁矿在水中的氧化过程是一个难题、也无 这方面的相关报道。本文同样采用 ATR FT IR 对黄铁矿在 水环境中的氧化进行了原位表征。

1 实验部分

1.1 试样和仪器

黄铁矿试样采自广东云浮黄铁矿。红外光谱仪器为德国 Bruker 公司的 TENSOR 27 型傅里叶变换红外光谱仪, DTGS 检测器,分辨率 $4~{\rm cm}^{-1}$,扫描 16 次,采用衰减全反射 (ATR) 技术表征。

12 实验方法

将少量黄铁矿粉末样品(反应体系)置于 ATR 晶体表面上。黄铁矿在大气环境中的氧及水汽和在水环境中的溶解氧作用下,发生如下反应过程。

$$FeS_2 + O_2 \longrightarrow SO_2 \longrightarrow SO_3 \tag{1}$$

$$SO_3 + H_2O \longrightarrow H_2SO_4(SO_2 + H_2O \longrightarrow H_2SO_3)$$
 (2)

由于黄铁矿中存在有一定量的碳酸盐(钙),再与 $\mathrm{H}_2\mathrm{SO}_4$ 反应生成 CO_2

$$CaCO_3 + 2H^+ \longrightarrow H_2CO_3 \longrightarrow CO_2$$
 (3)

反应生成的二氧化碳滞留于样品空隙中。随反应进行, 二氧化碳浓度增加,通过 ATR 红外光谱表征出来,以此实 现黄铁矿氧化的原位表征。

收稿日期: 2007 05-28, 修订日期: 2007 08-30

基金项目: 国家自然科学基金项目(20477007), 国家自然科学基金委 广东省人民政府联合基金项目(U0633001), 广州市科技计划项目 (2004JF C0331)和广州市属高校科技计划项目(62013)资助

2 结果与讨论

2.1 黄铁矿物相组成

图 1 所示为黄铁矿石的光学显微照片(50×10 , 正交偏光),可以看出黄铁矿中存在一定量的碳酸盐(Calcite),满足实验方法要求。进一步的 X 射线衍射(XRD)分析表明,矿石主要由黄铁矿(88%)、碳酸盐(5%)、硅酸盐(3%)、褐铁矿($FeO(OH) \cdot nH_2O$, 1%)和粘土矿物(2%)组成。

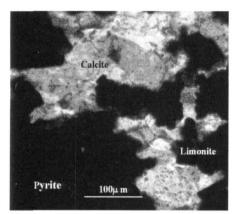


Fig 1 Optical microscope image of pyrite

2.2 黄铁矿在空气中氧化的原位表征

黄铁矿表面氧化速度非常快。光电子能谱(XPS) 分析表明,黄铁矿在空气中暴露 $1~\mathrm{min}$,其表面所形成的硫酸盐达 $14\%^{[2]}$ 。本文通过上述设计实验,原位表征黄铁矿表面氧化过程,图 $2~\mathrm{fm}$ 所示为黄铁矿在温度为 $25~\mathrm{C}$,相对湿度为 80% 环境中的原位衰减全反射红外光谱。可以看出,随着时间的推移,表征 CO_2 的 $2~360~\mathrm{Au}$ $2~340~\mathrm{cm}^{-1}$ 双吸收峰从无到有,并逐渐增强,这表明黄铁矿在氧和水汽存在下,发生了氧化。 $3~950~\mathrm{C}$ $3~500~\mathrm{cm}^{-1}$ 及 $1~800~\mathrm{C}$ $1~400~\mathrm{cm}^{-1}$ 附近发生的吸收现象,应该是在水汽存在下,黄铁矿发生氧化及表面酸化过程中中间物种引起的。

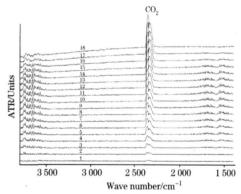


Fig 2 In situ ATR FTIR spectra of pyrite in air different time. Form 1 to 18, 0 0; 0 6; 1 9; 2 7; 3 9; 5 1; 5 9; 7 4; 9 4; 11 2; 12 7; 15 4; 18 8; 22 7; 27 3; 32 6; 38 4; and 44 8 min, respectively

2 3 黄铁矿在水中氧化的原位表征

图 3 为黄 铁矿在 水环 境中的 原位 ATR FTIR 光谱, 1 630 cm⁻¹为水的吸收峰。与在大气环境中的反应相似,表征 $CO_2(CO_2 + H_2O \Longrightarrow H_2CO_3)$ 的 2 360 和 2 340 cm⁻¹双吸收峰也是从无到有,逐渐增强,这表明黄铁矿在水中发生了明显的氧化反应。

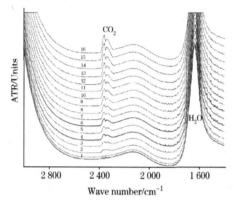


Fig 3 In situ ATR FTIR spectra of pyrite in air different time. Form 1 to 18, 0 0; 1 0; 2 0; 3 8; 5 3; 5 9; 7 2; 9 1; 11 2; 13 1; 16 0; 19 3; 23 6; 29 6; 35 1 and 41 6 min, respectively

2 4 空气和水对黄铁矿氧化速率的影响

采用积分方法对表征 CO₂ 的吸收峰进行积分,并以 CO₂ 峰面积对时间作图,结果如图 4 所示。可以看出,在开始时 (3 min 内),两条曲线重叠,并呈线性,表明这一时间段黄铁矿在水中和大气中的氧化速率无明显差异,并均保持稳定。随着时间延长,两条曲线逐渐向时间轴弯曲,表明黄铁矿在空气和水中的氧化速率均下降。但是,黄铁矿在水环境中的氧化速率下降较之在大气中显著,表明黄铁矿在水中的氧化较之在大气中要慢。

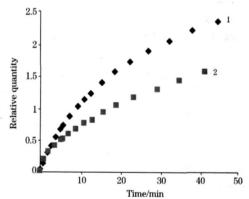


Fig 4 Influence of air and water on oxidation rate of pyrite

1: in air; 2: in water

3 结 论

(1) 通过设计生成二氧化碳实验,实现了黄铁矿在大气环境中和水环境中氧化的原位衰减全反射红外光谱(in situ

(2) 原位衰减全反射红外光谱分析表明, 黄铁矿在空气和水中的氧化速率均随时间而下降, 黄铁矿在水中的氧化较之在大气中要慢。

(3) 在红外光谱测量中, $2~350~{
m cm}^{-1}$ 处的双吸收峰是 CO_2 的特征吸收,干扰少。因此,该方法简便、选择性好,可实现原位分析。

参 考 文 献

- [1] Mattila S, Leiro J A, Heinonen M. Surface Science, 2004, 566 568(2): 1097.
- [2] Schaufuss A G, Nesbitt H W Kartiol. Surface Science, 1998, 411: 321.
- [3] Belzile N. Chen Y W. Cai M F. et al. Journal of Geochemical Exploration, 2004, 84(2): 65.
- [4] Hajati S, Zaporojtchenko V, Faupel F, et al. Surface Science, 2007, 601(15): 3261.
- [5] Mun C, Ehrhardt J J, Lambert J, et al. Applied Surface Science, 2007, 253(18): 7613.
- [6] ZHONG Yong qiang, ZHENG Jiar gui, FENG Liang huan, et al(钟永强, 郑家贵, 冯良桓, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2007, 27(3): 598.
- [7] FENG Shao bin, SHANG Shirbo, FENG Litting, et al(冯绍彬, 商士波, 冯丽婷, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2006, 26(1): 166.
- [8] ZHANG Ping, YAO Yan, YANG Chunrxia, et al(张 平、姚 焱,杨春霞,等), Analytical Chemistry(分析化学), 2007, 35(1); 83.
- 9] Delgador M acuil R, Rojas López M, Gayou V L, et al. M aterials Characterization, 2007, 58(89): 771.
- [10] Smiechowski M, Stangret J. Journal of Molecular Structure, 2007, 834 836(27): 239.
- [11] Branan N, Wells T A. Vibrational Spectroscopy, 2007, 44(1): 192.
- [12] Destaillats H, Singer BC, Gundel LA. Atmospheric Environment, 2007, 41(15): 3177.
- [13] LIN Huarxiang, WANG Xurxu, DAI Werrxin, et al(林华香, 王绪绪, 戴文新, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2005, 25(7): 1057.
- [14] Fredriksson A, Holmgren A. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302(1-3): 96.
- [15] Dolamic I, Bürgi T. Journal of Catalysis, 2007, 248(2): 268.
- [16] Wei D, Espindola P, Lindfors T, et al. Journal of Electroanalytical Chemistry, 2007, 602(2): 203.
- [17] Elzinga E J, Sparks D L. Journal of Colloid and Interface Science, 2007, 308(1): 53.

Characterization of Oxidation on Pyrite by *In Situ* Attenuated Total Reflection Fourier Transform Infrared Spectroscopy

ZHANG Ping, CHEN Yong heng, LIU Juan, WANG Churr lin

Guangzhou Key Laboratory of Pollution Control and Isotope Application Technology, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China

Abstract Pyrite is one of common natural minerals in the environment, which is easily oxidated and is the main source of acidity mine drainage (AMD). The study on the oxidation of pyrite is helpful to comprehend the mechanism of its pollution. In the present paper, the oxidation of pyrite under the condition of air and water was respectively investigated by the attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) through the designing experiment on the formation of carbon dioxide by the reaction of carbonate in pyrite with sulfuric acid formed by the oxidation of pyrite. The CO₂ measurement by *insitu* ATR indicated that the oxidation rate of pyrite both in the air and in water both reduced by time and the latter reduced more obviously than the former, which indicates that the oxidation rate of pyrite in water is slower than that in the air. In the ATR measurement, the double absorption peaks at 2 350 cm⁻¹ that indicates CO₂ have high selectivity, and permits the *insitu* analysis.

Keywords In situ attenuated total reflection Fourier transform infrared spectroscopy; Pyrite; Oxidation

(Received May 28, 2007; accepted Aug. 30, 2007)