纳米 TiO_2 预分离/富集 FAAS 法同时测定 Cr() 和 Cr() 的研究

陈松涛^{1,2}, 闫永胜^{1*}, 徐婉珍¹, 刘 华¹, 荆俊杰¹, 谢吉民¹

- 1. 江苏大学化学化工学院, 江苏 镇江 212013
- 2. 平顶山工学院, 河南 平顶山 467000

关键词 纳米 TiO2; 火焰原子吸收法; Cr(); Cr(); 形态分析

中图分类号: 0.657.3 文献标识码: A 文章编号: 1000-0593(2007) 05-1018 03

引言

铬是环境污染和动植物生长发育的重要元素之一。铬的毒性及生物可用性不取决于铬的总量,而是取决于铬存在的形态,铬的价态不同,对人体作用迥然不同,适量 $Cr(\)$ 为人体所必需,是维持体内正常的糖、脂肪、蛋白质代谢的必需元素,而 $Cr(\)$ 则对人体有高毒性,具有干扰生物酶活性,致癌,致突变等毒性作用[11],因此,环境样品中铬的形态分析意义重大。关于铬的形态分析已报道的分离方法有离子交换法、溶剂萃取法、固相萃取法、共沉淀法、电化学法、色谱法[25]等。对 $Cr(\)$ 和 $Cr(\)$ 的检测方法有:电感偶合等离子体原子发射光谱法(12) 电感偶合等离子体质谱法(12) 16 电感偶合等离子体质形象)、原子吸收光度法(12) 及分光光度法(12) 16 11 。

纳米材料是近年来受到广泛重视的一种新兴功能材料, 纳米粒子的粒径在 1~100 nm 之间, 属于原子簇与宏观物体交界的过渡状态, 它既非典型的微观体系, 又非典型的宏观体系, 具有一系列新异的物理化学特性, 具有一些优于传统材料的特殊性能[12]。其中一点是随着粒径的减小, 表面原子数迅速增大, 表面原子周围缺少相邻的原子, 具有不饱和

性,易与其他原子相结合而稳定下来,因而具有很大的化学活性。研究表明,纳米材料对许多金属离子具有很强的吸附能力,是痕量元素分析较为理想的分离富集材料。本文利用火焰原子吸收法(FAAS)研究了纳米 TiO_2 (金红石型)对 $Cr(\)/Cr(\)$ 的吸附性能,并应用于水样中铬的形态分析[IB]。结果表明, IB 月 6 5 微酸性条件下,该法测定 $Cr(\)$ 和 $Cr(\)$ 的检测限分别为 57 和 41 I $^$

1 吸附机理

在碱性条件下,纳米 TiO_2 对于金属阳离子的吸附可能机理为 $^{[14]}$

在酸性条件下, 纳米 TiO₂ 对于酸根阴离子的吸附可能 机理为:

$$Ti \longrightarrow O + H^- \longrightarrow Ti \longrightarrow O$$
 $H^+ \longrightarrow H_{n-1}MO_mH^+ \longrightarrow I$
 $Ti \longrightarrow O + H_nMO_m \longrightarrow Ti \longrightarrow O + H$

我们用 FAAS 法对 Cr()和 Cr()在纳米 TiO2 材料 上的吸附性能进行了较系统的研究, 在选定的 pH 值条件下 实现了对 Cr()和 Cr()的分离富集,将其应用于环境水 样中 Cr() 和 Cr()的测定, 结果比较满意。

实验部分

2.1 主要仪器与试剂

TAS-986 型原子吸收分光光度计(北京普析通仪器有限

责任公司), 铬阴极灯。

Cr()储备液(10g·L-1)由 Cr(NO)3 配制; Cr() 储备液 $(1,0g \cdot L^{-1})$ 由 $K_2Cr_2O_7$ 配制: 标准溶液系列由 1.0 g• L-1的储备液逐级稀释而成: 各种干扰离子的储备液 按常 规方法配成 10 0 g • L-1 或 1. 0 g • L-1 的溶液; 纳米 TiO2 (江苏河海纳米材料有限公司提供, 粒径为 0~100 nm); 实 验用试剂均为分析纯、实验用水为二次石英蒸馏水。

2 2 仪器工作条件

仪器工作条件见表 1 所示。

2.3 实验方法

在 10 mL 具塞比色管中加入一定量的 Cr()和 Cr() 混合溶液、用 NH3 · H2O 和 HCl 调节 pH 值至 6 5, 称取 0 10 g 的纳米 TiO 2 固体加入其中, 振荡 10 min, 静置 30 min 后离心. 移取上层清液用 FAAS 法测定 Cr()的含量: 沉积物用少量水洗涤两次, 加入 $10 \text{ mL } 2 \text{ 0 mol} \cdot \text{ L}^{-1}$ 的 HCl, 振荡 15 min, 静置 30 min 后离心, 移取上层清液用 FAAS 测定 Cr()的含量。

Table 1 Working conditions of instrument

元素	灯电流	波长	光谱	燃烧器高度	空气压力	空气流量	乙炔压力	乙炔流量
	/ mA	/ nm	/ nm	/mm	/kPa	/(L• min ⁻¹)	/ kPa	/(L• min ⁻¹)
Cr	7	357. 9	0.7	9	19 612	21	9 806	7

结果与讨论

3.1 pH值的影响

pH 值对 Cr() 和 Cr() 在纳米 TiO_2 上的吸附有很大 影响。 其他条件不变,按实验方法考察了不同 pH 值条件下 Cr() 和 Cr() 的吸附率,结果如图 1 所示。图 1 表明,当 pH > 6 时,纳米 TiO_2 对 Cr() 的吸附率大于 90%,而对 Cr() 基本不吸附。这是因为 TiO_2 是一种两性氧化物,对 于金属阳离子, 只有当 pH 大于其等电点时才能发生吸附, 而金属酸根离子正好相反。Cr()在水溶液中是以金属酸根 离子形式存在, Cr()是以阳离子形式存在, 所以当 pH 较 高时, 纳米 T iO2 可以对 Cr()和 Cr()进行选择性吸收。

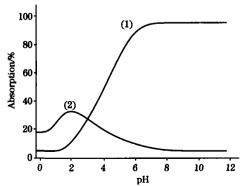


Fig 1 Effect of the pH on the adsorption of Cr() and Cr() on nanometer-sized on TiO₂

1: Cr(); 2: Cr()

本实验选择 pH 6 5 作为分离 Cr() 和 Cr() 的条件。

3 2 Cr()的洗脱

由图 1 可以看出, 随着酸度的增大, 纳米 TiO2 对 Cr()的吸附率降低, 因此可以用高浓度的酸来洗脱吸附的 Cr(-). 本实验考察了不同浓度的 HCl 作为解脱剂 Cr(-)的回收率, 所得结果表明, 当 H Cl 浓度大于 2 0 mol • L-1 时, Cr()的回收率大于95%, 因此本实验选择20 mol• L-1的 H Cl 作为 Cr()的洗脱剂。

3 3 Cr()对 Cr()吸附的影响

配置不同比例的 Cr() / Cr() 的混合液, 按上述实验 方法操作, 计算 Cr() 的回收率。发现当 Cr() / Cr() < 50 时, Cr()(2 0 µg • mL - 1)的回收率的变化 5% 以内,表 明在 Cr() 和 Cr() 共存的情况下, 在实验所确定的条件 下, 50 倍量的 Cr() 对 Cr() 的富集检测不产生影响。

Table 2 Determination of Cr() and Cr() in water sample and result of recovery test (n=6)

样品			测定平均值 /(µg• mL ⁻¹)	加标量 /µg	相对标准 偏差/ %	回收量 / µg	回收率 /%
工业废水	Cr()	454 0 122 4	200 100	2 3 2 0	200 2 98 4	100 1 98 4
地表水	Cr()	0 65 0 16	1. 0 0. 5	1. 4 2. 7	0 971 0 500	97. 1 100

3 4 共存离子的影响

在选择的实验条件下,对含有 1 0 kg • mL - ' 的 Cr(__)

或 $Cr(\)$ 的 10 mL 试样,5 mg Na^+ , K^+ ; 2 mg 的 Ca^{2+} , $M\,g^{2+}$; 1 mg 的 $A\,I^{3+}$; 100 mg 的 $F\,e^{3+}$, Cu^{2+} , $N\,i^{2+}$, $M\,n^{2+}$, $M\,oO\,_4^{2+}$, $V\,O_3^-$, $W\,O_4^{2-}$ 离子对 $Cr(\)$ 和 $Cr(\)$ 分离测定不产生影响。

3.5 检量线、检出限、精密度

 $Cr(\)$ 和 $Cr(\)$ 在 0 1~ 10 μ_g • mL^{-1} 和 0~ 9.0 μ_g • mL^{-1} 的浓度范围内,其工作曲线线性良好,当 $Cr(\)$ 和

Cr() 各为 2 0 µg· mL⁻¹时, 其 RSD 分别为 3 4% 和 2 6% (n= 6); Cr() 和 Cr()的检出限分别为 57 和 41 ng· mL⁻¹。

3 6 分析应用

取工业废水(电镀)及地表水(镇江段长江水)加25%磷酸0.5 mL,10%05 mL NaF,按实验方法测定其中Cr()和Cr()含量。

参 考 文 献

- [1] Ottaway J.M., Fell G.S. Pure and Applied Chemistry, 1986, 58: 1707.
- [2] Mazzu cotelli A, Soggia F, Cosma B. Applied Spectroscopy, 1991, 45: 504.
- [3] Mazzu cotelli A, Frache R, De Paz F. Applied Spectroscopy, 1991, 45: 507.
- [4] Akira Miyazaki, Ramon M, Barnes. Anal. Chem., 1981, 53(2): 364.
- [5] Vassileva E, Deshusses J, Robin D, et al. International Journal of Environmental Analytical Chemistry, 1996, 62: 129.
- [6] Vassileva E, Varimezova B, Hadjiivanov K. Analytica Chimistry Acta, 1996, 336: 141.
- [7] Vassileva E, Furuta N. Spectrochimica Acta-Part B Atomic Spectroscopy, 2003, 58: 1541.
- [8] Vassileva E. Analysis, 1968, 28: 878.
- [9] LIANG Pei, LI Chun-xiang, QIN Yong chao(梁 沛,李春香,秦永超). Journal of Analytical Science(分析科学学报), 2000, 16(4):
- [10] TANG Gui-na, HE Shi-jun, WANG Bao-ning(汤桂娜, 贺仕军, 王保宁). Analytical Chemistry(分析化学), 1995, 23(4): 383.
- [11] SHEN Jin-shan, LI Xian-rui(申金山,李献锐). Analytical Chemistry(分析化学), 2001, 29(8): 944.
- [12] WANG Wen-zhong, LI Liang-rong, LIU Xing-long(王文中,李良荣,刘兴龙). Material Review(材料导报),1994, (6): 8.
- [13] KANG Weijun, LIANG Shu-xuan, HA Qing, et al(康维钧, 梁淑轩, 哈 婧, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2003, 23(3): 572.
- [14] Vasileva E. Physicochemical and Engineering Aspects, 1994, 90(1): 9.

Combination of Separation/Preconcentration Based on Nanoscale TiO₂ and FAAS for the Simultaneous Determination of Cr()/Cr() in Water

CHEN Song-tao^{1, 2}, YAN Yong sheng^{1*}, XU Wan-zhen¹, LIU Hua¹, JING Jun-jie¹, XIE J÷min¹

- 1. College of Chemistry and Chemical Engineering, Jiang su University, Zhenjiang 212013, China
- 2. Department of Chemical Engineering, Pingdingshan Institute of Technology, Pingdingshan 467000, China

Abstract The nanometer-sized materials have attracted much interest of analysts in recent years because of their special physics-chemistry characteristics. As the scale decreases to nanometer grade, the number of atoms on the surface increases remarkably, resulting in the unsaturation. This makes the nanometer-sized materials have a high adsorptivity for the metal atoms. In the present paper, the nanometer-sized TiO₂ was applied in the separation and preconcentration of Cr() and Cr() in water. The influence of pH on the adsorption of Cr() and Cr() was studied. When pH is larger than 6, 90%, Cr() is adsorbed onto the nanometer-sized material surface, while is basically not adsorbed in aqueous solution. Therefore, the separation of Cr() and Cr() is achieved. At the pH of 6.5, Cr() was adsorbed by nanometer-sized TiO₂ and desorbed with 2.0 mol·s. L⁻¹ HCl, in which the Cr() could be preconcentrated. The Cr() solution, as well as the Cr() aqueous solution was determined by FAAS. The detection limits of Cr() and Cr() were 41 and 57 ng·mL⁻¹, respectively. And the linear ranges for Cr() and Cr() were θ -9.0 μ g·mL⁻¹ and 0.10 μ g·mL⁻¹ with a RSDs of 2.6% and 3.4% (n=6, c=2.0 μ g·mL⁻¹), respectively. This method was applied in the simultaneous determination of Cr() and Cr() in the industrial wastewater and river water, and the satisfactory recovery results were obtained.

Keywords Nanometer sized TiO₂; Cr(); Cr(); FAAS; Speciation analysis