光 谱 实 验 室 Chinese Journal of Spectroscopy Laboratory

自贡地区恐龙骨骼化石及围岩特征的研究①

邓建国^{20a,b} 彭光照^c 金永中^{a,b} 叶勇^c a(四川理工学院材化学院 四川省自贡市汇东新区学院街180号 643000)

b(材料腐蚀与防护四川省高等学校重点实验室 四川省自贡市 643000)

c(自贡恐龙博物馆 四川省自贡市 643013)

摘 要 自贡地区恐龙化石埋藏丰富、分布广泛、保存完整,具有重要的科学价值、社会价值和经济价值。用 X 荧光衍射研究自贡恐龙骨骼化石及围岩元素组成, XRD 结合红外光谱仪分析确定化石的矿物组成,化石切片和显微观察了解骨骼内部构造和填充物质。恐龙骨骼化石及围岩中的含钙量均较高(> 5%), 但化石含钙量达到 30% 以上;化石中的含硅量较低(0.24% -1.45%),围岩中的含硅量较高(> 14%);化 石中的含磷量为围岩的 46 倍以上。化石的主要化学成分是碳氟磷灰石,其次是碳酸钙;围岩的主要成分是 二氧化硅。实验结果可为恐龙化石的鉴别及保护材料的研制提供理论依据。

关键词 恐龙骨骼化石; 围岩; 光谱分析; 矿物成分

中图分类号: 0434.13; 0657.33 文献标识码: A 文章编号: 1004-8138(2010) 01-0192-05

1 前言

被誉为"恐龙之乡"的自贡侏罗系地层分布特别广泛,其中产出的化石不仅数量丰富,门类众 多,保存完好,而且在几个地点恐龙及其他脊椎动物化石集中埋藏在一起,形成规模宏大的恐龙化 石埋藏群¹¹。自贡地区丰富的恐龙化石不仅对于恐龙的分类、演化、生活习性和侏罗纪时期的古生 态环境的研究具有重要的科学价值,而且也是一种宝贵的文化和旅游资源,有助于丰富城市的文化 内涵和促进地方旅游经济的发展。该地区的恐龙化石一直得到很好的保护和利用,不仅建有专业性 恐龙博物馆,而且还建有'国家地质公园'"和'世界地质公园'"。但由于自贡地区的气候常年高温多 雨,潮湿多雾,同时自贡又是一个盐化工城市,空气和水质污染较为严重,因此已出土恐龙化石的自 然风化现象较为严重。为了更好地保护这一珍贵自然遗产,我们利用了多种手段从恐龙骨骼化石及 其围岩的成分和结构着手进行初步分析和对比研究,从而为下一步恐龙化石的防护材料的研制提 供科学依据。

- 2 实验部分
- 2.1 材料

实验用化石样品共5件,均产自四川省自贡市大山铺恐龙化石群遗址,化石埋藏于侏罗系重庆

- ② 联系人, 手机: (0) 13990060559; E-mail: sc zgdjg66@ sina. com
- 作者简介:邓建国(1966一),男,成都市人,副教授,主要从事材料研究工作。

收稿印期920092071-01, 接受日期: 2009:07:3 Journal Electronic Publishing House. All rights reserved. http://www.c

① 材料腐蚀与防护四川省高校重点实验室重点项目(2008CL05);现代古生物学和地层学国家重点实验室(中科院南京地质古生物研究所)基金(No. 043103)

群下沙溪庙组的灰绿色长石石英砂岩层中,化石层距上沙溪庙组底部约136m,地质年代为距今约1.6亿年前的中侏罗世。其中,化石成分分析用化石样品3件(编号A、B、C)均为破碎的蜥脚类恐龙的肋骨化石,属背肋骨干远端的一小段。切片用化石样品2件(编号D、E)为蜥脚类恐龙的肢骨化石,分别为天府峨眉龙和李氏蜀龙成年个体的肱骨,切片部位均为肱骨骨干的中下部。

实验用围岩样品共3个(编号1# --3#),采自大山铺恐龙化石群遗址,但层位要稍高于化石样品之层位(约9m),时代仍为中侏罗世。岩性为浅黄绿色石英砂岩。

2.2 实验方法

2.2.1 X 荧光衍射分析

将化石样品 A、B 和围岩样品 1#、2#送四川理工学院的省腐蚀与防护高校重点实验室,利用德国布鲁克 AXS 公司的 S4EXPLORER X 射线荧光光谱仪进行光谱半定量全分析测试,参数选用:真空光谱仪模式,固定速度为 0.5r/s,与样品直径对应的准直器面罩 34mm,测量顺序以先测量高能量谱线,扫描范围 10 倍准直器角度,步长 10% C.A。恐龙化石及围岩 X 荧光衍射分析结果如表 1。

表 1 恐龙化石样品及围岩样品 X 荧光衍射分析结果

 (10^{-3} wt\%)

样品编号	÷ 1	Ba	Р	Pb	Ga	Nb	Mn	Fe	А	1	Ce	Ca	Ti	Y	V	La	5	Sr	Si	Zr	Li
化石 A	2	200	5055	15	< 1	< 10	> 300	1530	65	.9 <	< 100	40860	< 100	20	10	15	1:	50	244	< 10	< 30
化石 B	3	800	4690	10	< 1	< 10	> 300	1815	25	7 <	< 100	33430	< 100	80	6	100	1:	50	1450	< 10	< 30
围岩 1#	3	300	100	3	3	< 10	100	2400	69	39 <	< 100	5325	400	3	5	> 10	0 <	100	14190	30	< 30
围岩 2#	1	50	100	3	3	< 10	100	2400	43	61 <	< 100	5243	400	3	4	15	<	100	14220	30	< 30
样品编号	Be	As	Hg	Gе	Sb	Та	Sn	U	Th	W	\mathbf{Cr}	Bi	Ni	In	M o	Cd	$\rm Yb$	Gu	Zn	Co	Ag
化石 A	< 1	< 30	< 100	< 1	< 10	< 30	< 1 <	< 100	< 30	< 10	3	< 1	< 3	< 3	< 1	< 1	2	10	< 10	< 1	< 1
化石 B	< 1	< 30	< 100	< 1	< 10	< 30	< 1 <	< 100	< 30	< 10	3	< 1	< 3	< 3	< 1	< 1	2	3	< 10	< 1	< 1
围岩 1#	< 1	< 30	< 100	< 1	< 10	< 30	< 1 <	< 100	< 30	< 10	4	< 1	4	< 3	< 1	< 1	< 1	4	< 10	2	< 1
围岩 2#	< 1	< 30	< 100	< 1	< 10	< 30	< 1 <	< 100	< 30	< 10	5	< 1	4	< 3	< 1	< 1	< 1	3	< 10	3	< 1

2.2.2 X 射线衍射分析

将化石样品 A、B送四川大学检测中心使用日本理学公司的 DX-1000 衍射仪,石墨单色器进 行检测。实验条件: CuK α40kV, 25mA,发射狭缝(DS)1°,接收狭缝宽(RS) 0.3mm,散射狭缝(SS) 1°,扫描范围 10°—70°,扫描速度 0.04°/s。测试化石结果如图 1。

2.2.3 红外光谱分析

将化石样品 A、B 及围岩 1#、2#送四川理工学院的省腐蚀与防护高校重点实验室,利用美国 热电公司 NICOLET 6700 FT-IR 红外光谱仪进行红外光谱分析。实验条件:扫描16次/min,波数为 8cm⁻¹,测得红外光谱图谱如图 2(围岩 1#、2#图谱同,以其中一条谱线表示)。

2.2.4 化学成分分析

将化石样品 C 和围岩样品 3# 送国土资源部西南矿产资源监督检测中心,分别利用日立 Z-5000检测仪(日本日立公司)采用原子吸收法测定 MgO、Fe2O3、MnO 含量;利用日立 180-80 检测 仪(日本日立公司)采用火焰发射光谱法测定 K2O、Na2O 含量;采用容量法测定 Al2O3、CaO, 重量法 测定 SiO2 含量;利用 EA 2000 红外硫碳元素分析仪(德国耶拿公司)测定 CO2 含量。测试分析结果 如表 2。

样品名称 SiO_2 $P_{2}O_{5}$ CO_2 Al_2O_3 Fe₂O₃ FeO Na_2O K_2O CaO M gO 51.30 化石 C 3.16 1.02 0.34 0.19 0.22 0.19 0.0217.44 16.69 ©围碧9;4-2010(Ruslishing House₂ All rights reserved₆ ang Academic Journal Electronic http://www

表 2	恐龙化石样品及围岩样品的化学成分分析结果	(wt %)
-----	----------------------	--------

2.2.5 化石切片和显微观察

将化石样品 D、E 送成都理工大学地质系实验室进行切片制作, 然后利用 XSP-15B 摄影显微镜, 放大 24 倍观察和照相, 从而直观地了解恐龙骨骼化石的内部构造和填充物质。显微观察结果 如图 3。

图 2 恐龙骨骼化石和围岩红外光谱

3 结果与讨论

通过恐龙骨骼化石及围岩样品的 X 荧光光谱分析, 其元素成分有以下特点:(1) 化石及围岩样品的含钙量均大于 5%, 其中, 化石含钙量是围岩的 6—8 倍。(2) 化石中的含硅量(0.244% — 1.4%)小于围岩中的含硅量(14% 以上)。(3) 化石中磷(>4%)的含量是围岩中磷(0.1%)含量的 48 倍以上。(4) 化石含锰量(0.3%) 约为围岩中的含锰量(0.1%)的 3 倍。(5) 化石平均含钇量(0.02% — 0.08%) 约为围岩中的含钇量(0.003%)的 10 倍以上。(6) 围岩中的含钛量(0.4%)为 化石含钛量(< 0.1%)的 4 倍。(7) 化石含铝量(0.0659% — 0.257%)仅为围岩中的含铝量的 3/20, 含铁量(1.53% — 1.815%) 略低于围岩(2.4%)。(8) 化石中镱含量高于围岩 2 倍以上, 而钴含量则 低于围岩含量¹2—3³ 倍。(3) ⁶ ⁶ ⁽³⁾ ⁶ ⁽³⁾ ⁶ ⁽⁴⁾ ⁽⁴⁾

铋、镍、铟、钼、镉、锌、银含量基本相同。

化石 XRD 光谱图1 初步测定表明, 化石主要矿物成分为氟磷灰石、方解石和石英。由图2 红外 光谱分析表明, 化石在 1046.3cm⁻¹有一极强振动吸收带, 该吸收带为 PO⁴ 基团的基频振动吸收 带, 在 1427.3cm⁻¹有一较强振动吸收带, 该吸收带为 CO³⁻基团的吸收带, 与中国科学院韩秀玲的 文献[2]中所列的碳氟磷灰石相比基本吻合。由表2 化学分析化石 CO₂ 含量达到 16.69% 也可佐证 其矿物成分中含有碳氟磷灰石。由此说明化石中存在的磷灰石为碳氟磷灰石; 围岩红外光谱图在 1035cm⁻¹为 C一O 键伸缩振动的吸收峰, 表明围岩中存在含氧的有机混合物。通过上述光谱分析和 化学成分分析, 可推断构成恐龙化石的主要成分为两种: 碳氟磷灰石(50%—55%) 和方解石 CaCO₃(45%—50%), 而围岩成分应为 SiO₂(39%—43%)、粘土、CaCO₃ 和部分有机质, 主要矿物为 石英。恐龙化石中含有碳氟磷灰石, 而围岩中没有此种成分。

化石切片显微观察表明,恐龙化石虽然已在地下埋藏了1亿多年,但其骨骼仍然保留了原来的 细微结构,密质骨、松质骨、哈佛氏、髓腔等构造均清晰可见^[3]。密质骨结构致密,可见大量的血管和 哈佛氏管,其中被方解石填充,而周围骨板由碳氟磷灰石组成。松质骨结构疏松,具有很多大小、形 状各异的重吸收腔,腔内以方解石填充为主,局部有石英,而骨小梁由碳氟磷灰石组成。

恐龙死亡后被埋藏于地下,经过长期的物质交换作用而逐渐石化形成化石,因此化石中的各种 矿物含量,反映了化石形成过程中该地区的地质、地理环境条件^[4]。实验结果表明,不同种属的恐 龙骨骼化石其成分基本相同,化石中的钙、磷含量均远高于围岩,这是由于化石中的钙、磷主要来 自于原骨骼中的有机物,而受埋藏环境的影响相对较小^[5]。由表 2 及图 1、图 2 和图 3 分析可知,恐 龙化石矿物组成为钙的磷酸盐和碳酸盐,围岩中同样含有较多的碳酸钙盐。在围岩中碳酸盐和石英 以分散状结合,而在恐龙化石中方解石则填充在由碳氟磷灰石构成骨质格架之间的孔隙中。由于该 碳酸钙盐容易受到酸的侵蚀,因此已出土的恐龙化石及围岩的自然风化现象较为严重,尤其是围岩 表现最为明显。因此,对已出土的恐龙化石和围岩必须定期进行防风化处理。

图 3 恐龙骨骼化石密质骨(A)和松质骨(B)的显微观察

4 结论

通过以上分析推论,可得出几点认识:

(1) 恐龙骨骼化石中的钙、磷含量均远高于围岩,特别是磷的含量通常为围岩的数十倍。因此,从化石成分上,钙、磷的含量是区别化石与围岩的一个重要标志。

©(2)9悲光骨骼化石的至要成分是碳氟磷灰石和方解石,围岩的主要成分是SiOyed由于碳氟磷~

灰石仅存在于化石中,而在围岩中没有发现,因此可作为鉴别化石的一个重要依据。

(3) 自贡恐龙化石的保护材料应依据本地区恐龙化石及围岩的物化特性, 酸碱度以中性为佳, 材料尽可能与化石和围岩具有相似性。

参考文献

- [1] 彭光照, 叶勇, 高玉辉等. 自 贡地区侏罗纪恐龙动物群[M]. 成都: 四川人民出版社, 2005. 1-32.
- [2] 韩秀玲. 碳氟磷灰石的红外吸收光谱[J]. 地质科学, 1980, 14(2): 156-165.
- [3] 叶勇, 彭光照, 江山. 四川自贡大山铺中侏罗世蜀龙和峨眉龙长骨骨组织结构的初步研究[J]. 古生物学报, 2007, 46(1): 135-144.
- [4] 杨群, 王怡林, 李朝 真等. 原子光谱和 X 射线衍射研究禄丰恐龙化石与围岩特征[J]. 光谱学与光谱分析, 2005, 25(2): 299—301.
- [5] 夏文杰,李秀华.恐龙埋藏环境及岩相古地理特征[M].成都:四川科学技术出版社,1988.80-82.

Study on the Characterization of Dinosaur Fossils and Their Surrounding Rocks from Zigong

DENG Jian-Guo^{a, b} PENG Guang-Zhao^b JIN Yong-Zhong^{a,b} YE Yong^c

d(Sichuan University of Sciences & Engineering, School of Material and Chemistry, Zigong, Sichuan 643000, P. R. China) b(Key Laboratory of Material Corrosion and Protection of Sichuan Colleges and Lniversities, Zigeng, Sichuan 643000, P. R. China) c(Zigong Dinosaur Museum, Zigong, Sichuan 643013, P. R. China)

Abstract The dinosaur fossils in Zigong are rich, widely distributed and well preserved, and have very important academic, social and economic value. The material compositions of the dinosaur fossils and their matrix in Zigong were studied with the help of XRF, XRD, FT-IR, microscope and chemical analysis methods. The fossils are rich in the contents of calcium (> 5%) and phosphorus. The fossils are more than 30% in the contents of calcium, but low in the content of silicon (0. 24% -1. 45%), while the matrix is high in the content of silicon (> 14%). The fossils in the contents of phosphorus are more than 46 times rock. The major compound of the fossils is $Ca10(P, C) \in (O, F) = 6$, followed by $CaCO_3$; while that of the matrix is SiO_2. The results of experiment will be the theoretical basis to research the protection material for dinosaur fossils and identification of dinosaur fossils.

Key words Dinosaur Fossils; Country Rock; Spectroscopy Analysis; Mineral Composition

过期 光谱实验室》期刊免费赠送启事

本部尚有一些过期(2007 及以前)的期刊,凡同行中有需要者均可免费赠送,但邮费(含包扎费和人工费) 自付,每 6本(不同期)为1个单元,约重2.0-2.5kg,收费(可用邮票支付)15元。

有意者可来信告知收件人姓名及详细地址,同时将邮票放在信封中挂号寄来。

联系地址:北京市延庆石河营东街 10 号楼 201 室 咣谱实验室》编辑部秦丽娟 何 霜,邮政编码: 102100,电话: (010) 52513126。

© 1994-2010 China Academic Journal Electronic Publishing House. All rights 在空空》编辑部,