DOI: 10.3724/SP. J.1096.2011.01318

基于自动磁珠转运的转基因蛋白 Cry1Ab 检测

李冬阳 樊凯 吴 坚 放 应义斌

(浙江大学生物系统工程与食品科学学院,杭州 310029)

摘 要 基于自动磁珠转运,建立了转基因蛋白 Cry1Ab 免疫检测的新方法。利用水热法制备了粒径约 400 nm 的纳米磁球,并进行电镜表征,通过溶胶法对磁球表面进行氨基修饰,采用戊二醛偶联对磁珠实现抗 体包被,在核酸提取仪中进行酶联免疫反应,采用分光光度法进行检测。本方法对转基因蛋白 Cry1Ab 的检出 限低于1 µg/L 与商品化酶联免疫试剂盒相当。本方法节约人力、严格控制时间,同时,所需设备成本较低, 有望取代传统的手动检测技术。

关键词 转基因作物;磁分离; Cry1Ab 蛋白;磁珠转运;免疫检测

1 引 言

转基因作物(GMOs) 因其先进的生物技术优势而发展迅速。在 1996~2008 年期间 种植面积增幅 高达 74 倍,每年的增长率超过 9%^[1]。虽然转基因作物有其独特的生物技术优势,但其对人和动物及 环境的风险尚未得到充分评估。如潜在的物种间基因流动、破坏生物多样性、增强害虫的抗药性和对人 类健康的威胁等因素,尚无法排除。因此,一些国家对转基因作物进行了立法,要求对含有转基因成分 超过 1% 的产品进行强制标识,该含量后被降至 0.9%^[2]。快速检测 GMOs 成分是这些法规能否有效实 施的关键。《*Analytical and Bioanalytical Chemistry*》期刊于 2010 年 3 月就 GMOs 检测分析技术出版了专 刊^[3]。

目前 检测转基因生物及其制品的技术可分为两大类:基于核酸的检测和基于蛋白质的检测^[2]。 核酸检测是检测其插入的外源基因,以聚合酶链式反应(PCR)为主。PCR 法灵敏度高,但操作复杂,对 测试人员有较高的技能要求^[4];另外,它耗时长、成本高和难以实现高通量检测等也限制着其应用。 蛋白层面的检测以免疫分析最为成功,包括酶联免疫吸附试剂盒(ELISA kit)和金胶试纸等。ELISA 对 操作的要求相对 PCR 要简单,但对操作人员的技能要求也很重要^[5]。试纸条操作简单,成本低廉,能较 好地实现现场检测,但难以用于定量分析。另外,免疫生物传感器等新兴技术也被用于蛋白检测^[6]。

生物磁珠因其优良的抗原捕捉能力而备受关注^[7]。利用磁珠转运可以方便地实现各种生化反应 步骤,而不需要复杂的流体控制系统。目前,磁珠转运应用于核酸提取和纯化的研究及装置较多,而除 了医院所使用的大型免疫磁分离发光检测系统需要复杂流路控制外,用于免疫分析的报道较少。利用 磁珠自动转运可以使操作流程更为标准化、统一化,同时降低操作劳动强度,对操作时间和条件的控制 也十分精准。本研究利用自制的免疫磁珠,结合现有的核酸提取仪,通过免疫磁珠转运实现了对转基因 蛋白 Cry1Ab 的检测。

2 实验部分

2.1 仪器与试剂

SK3300HP 超声清洗器(科导公司);BS224 型电子天平(德国 Sartorius 公司);电动搅拌机和涡旋振荡器(德国 IKA 公司);M5 多功能酶标仪(美国 MD 公司);核酸提取仪(杭州博日公司);单道和八道移液器(德国 Eppendorf 公司);JEM-1200EX 透射电镜(日本 JEOL 公司);低温磁场测试和试样制备系统(美国 Quantum Design 公司);实验用水通过去离子水机(美国 Millipore 公司)制备。

²⁰¹⁰⁻¹¹⁻¹⁶ 收稿; 2011-04-21 接受

本文系国家科技专项(No. 2009ZX08012-004B)资助

^{*} E-mail: wujian69@ zju. edu. cn

Cry1Ab蛋白一抗(鼠单抗)和酶联免疫试剂盒(美国 Abraxis LLC 公司);戊二醛、正硅酸乙酯 (TEOS)、3-氨丙基三乙氧基硅烷(APTES)、牛血清白蛋白(BSA)、六水合三氯化铁(FeCl₃•6H₂O),购 自美国 Sigma-Aldrich 公司;四甲基联苯胺(TMB)单组分显色底物(天津天健公司)。所用试剂均为分析 纯;0.1 mol/L 磷酸盐缓冲液(PBS, pH 7.4)和 PBST 缓冲液(含0.1% 吐温 20 的 PBS, pH 7.4)。

2.2 实验方法

2.2.1 水热法制备 Fe_3O_4 纳米磁珠 综合文献 [8 9]的方法合成磁珠。简言之 在 25 mL 内衬聚四氟 乙烯的高压反应釜中 加入 0.719 g FeCl₃ • $6H_2O_3I.2$ g 醋酸钠、0.48 g 聚乙烯吡咯烷酮(PVP) 和 15 mL 乙二醇 磁力搅拌 20 min 使之混合均匀; 然后将反应釜盖牢置于温度为 160 °C 的烘箱中反应 24 h, 待其自然冷却后,将釜内反应产物进行离心或磁分离,再经乙醇和去离子水交替清洗 3 次,置于真空干 燥箱中 60 °C 干燥 8 h,得到黑色粉末。

2.2.2 磁珠的表面修饰 参见文献 [9]的方法,在磁珠表面修饰 SiO₂ 层,制备 Fe₃O₄@ SiO₂ 磁珠。简 言之,取 40 mg 裸磁珠溶于 20 mL 乙醇,超声分散,加入 12 mL 去离子水和 2 mL 氨水(25%~28%)。移 入三颈烧瓶中,在 45 °C 水浴中机械搅拌; 另取 400 μ L TEOS 溶于 20 mL 乙醇。充分搅拌后加入到之前 的三颈烧瓶中,搅拌 6 h,清洗后即得到包裹有 SiO₂ 层的磁珠(Fe₃O₄@ SiO₂)。

在磁珠 Fe_3O_4 @ SiO₂ 磁珠表面修饰上氨基(—NH₂) ,参照文献 [10,11]:将所得 Fe_3O_4 @ SiO₂ 磁 珠加入到 100 mL 98% (*V/V*) 乙醇中,在三颈圆底烧瓶中机械搅拌 20 min,加入 100 μ L APTES,反应 6 h;将反应产物离心或磁分离,再经乙醇和去离子水交替清洗 3 次;用 2 mL 乙醇溶解,即得 20 g/L 的氨基化磁珠。磁滞回线通过低温磁场测试和试样制备系统测得。

2.2.3 免疫生物磁珠的制备 取上述修饰有氨基的磁珠 75 μL 加入到 EP 管中 用 PBS 缓冲液清洗 3 次; 加入 10% 戊二醛溶液 圆周混合反应 1 h 再用 PBS 清洗 3 次 即得到戊二醛活化的修饰有醛基的磁珠; 向其中加入 20 μL 1 g/L 转基因蛋白 Cry1Ab 一抗和 280 μL PBS,于室温下圆周混合 3 h; 清洗后加入 300 μL 0.2 mol/L 甘氨酸混合 15 min 封闭剩余的醛基; 加入含(m/V) BSA 2.5% 的 PBS 溶液混合 15 min 封闭非特异 性吸附位点; 清洗过后加入 350 μL PBS 进行涡旋振荡 即得到均匀的修饰有一抗的免疫生物磁珠悬浮液。

2.2.4 自动磁珠转运 取与核酸提取仪配套的 96 孔深孔板(每孔容积约为 1.2 mL) 在软件中编写程 序 设定操作和每步的运行时间。与传统的生化反应系统不同 核酸提取仪通过磁珠的转运实现一系列 不同的生化反应步骤 ,由于磁珠的转运可以通过磁棒运动实现 ,因此整个系统避免了复杂的流路控制体 系。核酸提取仪在工作时(图 1) ,套有一次性塑料套头的磁棒和套头可以同步运动 ,也可以分开运动。 当需将样品从一个操作步骤(一列孔) 转移到下一操作步骤时(另一列孔),磁棒会进入套头底部并和套 头一起运动到孔底,磁吸附 60 s 后,磁棒连带套头及吸附在上面的磁珠进入到下一步骤(一列孔)。此 时,磁棒离开套头并上移至顶部 ,吸附在套头上的磁珠被释放到溶液中 ,并在套头连续的上下运动带动 下分散开来。本实验中的抗原分析物 Cry1Ab 蛋白、二抗(兔多抗)和酶标抗体(标记有 HRP 酶的羊抗 兔 IgG) 均来自 Abraxis 公司的试剂盒,抗原浓度为 0 ,0.25 ,1 ,2 和 4 μg/L ,抗体皆为试剂盒工作浓度。 第一列中取 5 孔加入不同浓度的抗原 ,其余各列中同列孔的加样量相同。各列孔的加样量和操作时间 见表 1 ,检测原理如图 1。

表1 不同步骤(孔列数)的加样量与操作时间

Table 1 Reagent composition and operation time of different steps (column , col)

	0 1	1		1	. ,			
孔列数 Col No.	第1列 Col.1	第2列 Col.2	第3列 Col.3	第4列 Col.4	第 5 列 Col. 5	第6列 Col.6	第7列 Col.7	第 8 列 Col. 8
加样量 Reagent (µL)	50 µL 磁珠 Magnetic beads	600 μL PBST	100 μL 二抗 Detection antibody	600 μL PBST	100 µL 酶标抗体 Tracer antiobody	600 μL PBST	600 μL PBST	300 μL TMB
	200 µL 抗原 Antigen		100 μ L PBS		$100 \ \mu L \ PBS$			
时间 Time(min)	30	3	30	3	30	3	3	10

PBST: Phosphate buffered saline Tween-20; TMB: 3 3' 5 5' +tetramethylbenzidine

2.2.5 比色分析 在磁珠转运操作的最后一步(第8列)结束后 磁头会将夹心结构的磁珠免疫复合

物吸走 随即与 TMB 的显色反应停止(5 min 内高浓度孔吸光值 A₆₅₀ 变化小于 0.004,在仪器分辨率 ±0.006 范围内)。比色测试在 M5 多功能酶标仪上完成。

图 1 磁珠转运原理示意图(以第 1 和 2 列的第 1 孔之间转运为例)

Fig. 1 Illustration of magnetic beads-based transfer (take the transfer between well 1 of column 1 and 2 as example)

3 结果与讨论

3.1 Fe₃O₄ 纳米磁珠的制备及表征

水热法优点在于合成较为简单,粒径分布非常窄,均匀度好,形貌容易控制^[12]。乙二醇是一种具 有高沸点的强还原剂,被广泛用于羟基化以形成单分散性好的金属或金属氧化物纳米颗粒。醋酸钠作 为一种静电作用稳定剂,可以起到防止纳米颗粒聚集的效用^[12,13]。另外,PVP 作为表面活性剂可以进 一步防止颗粒聚集。图 2a 为采用水热法合成的磁珠 TEM 照片,颗粒近似于球状,直径约 440 nm。 TEOS 在氨水的碱性环境下能水解产生 SiO₂,这样便可以在裸磁珠的表面形成 SiO₂ 层。一方面可以起 到保护作用,防止 Fe₃O₄ 纳米颗粒被进一步氧化,同时防止 Fe₃O₄ 裸磁珠参与别的反应,例如催化 TMB^[14];另一方面,新形成的 SiO₂ 层表面有丰富的羟基,可以为进一步修饰提供充足的偶联位点。本 研究修饰上的 SiO₂ 层厚度约为 45 ~ 60 nm(图 2b)。APTES 作为一种高效的硅烷偶联剂,被广泛用于在 表面修饰上氨基。APTES 不同于 TEOS,它在空气中即可吸潮发生反应,因为它有富含电子的氨基活性 中心,能迅速与氢供体(如羟基等)作用发生吸附和催化缩合,即使在无水环境下也可以发生反应^[15]。 Rossi等^[10]曾在无水环境下,以无水乙醇为溶剂,加入 0.75% APTES,即在共沉积法所获磁珠的表面修 饰上足够的氨基,并成功用于葡萄糖氧化酶的偶联。在有机相中,APTES 水解较慢,倾向于形成可控

性较强的单层,而在水相中, APTES 水解剧烈,易形成表面积更大、氨基位点更多的多层硅层^[11]。为了 尽可能多地在表面修饰上氨基,本研究在乙醇相中加入少许水相。图 2c 为经 TEOS 和 APTES 修饰后的

TEM 图 硅层总厚度为 80~90 nm ,APTES 层修饰的 厚度约为 25~30 nm。

最终修饰好的磁珠仍保有良好的磁性。从磁滞 回线(图3)可知 磁珠的饱和磁化率为 56.8 emu/g; 它还表现出良好的超顺磁性(例如,当外加磁场移除 时 不存在剩磁),这是由于磁珠中存在小于 30 nm 的磁纳米颗粒组分;磁珠的超顺磁性能防止外加磁 场移除后磁珠发生聚集,并且能使之迅速重新分 散^[16]。由于超顺磁性和硅层的屏蔽效应,硅层修饰 后的磁珠能够轻易且稳定地分散在水溶液中。本实 验中经 APTES 修饰后的磁珠的浓度约 1.08 × 10¹⁰ 个/mL 将该磁珠置于 EP 管中,再外加磁场(约 4000 高斯)后,能在 1 s 内完成磁分离,这表明所制磁珠有 良好的磁响应能力。磁珠作为分离工具进行应用 时 磁珠的分散性和对磁场的灵敏性是两个需考虑的重要因素^[16]。

图 3 经 APTES 修饰后的磁珠的磁滞回线(饱和磁化 率为 56.8 emu/g)

Fig. 3 Hysteresis loops of APTES-treated magnetic beads indicating magnetic saturation value of 56.8 emu/g

3.2 生物免疫磁珠的功能化

自 Avrameas^[17]提出将戊二醛用于偶联抗体和酶标以来,该方法因简单、高效,在偶联中能极好地保 持抗体分子的免疫活性和酶分子的催化活性而被广泛应用,并为 Sigma-Aldrich 公司在商业化酶标抗体 生产和 Bangs 公司生物磁珠的偶联中所使用。Avrameas^[18]还发现,在极端条件下,用戊二醛活化的 HRP 酶的活性很稳定,而未经戊二醛处理的 HRP 酶容易失活。本研究采用戊二醛活化磁珠表面的氨 基,并采用了较高的浓度(10%),以保证磁珠表面的氨基得到充分活化。但是,戊二醛法容易发生自 聚,在修饰上抗体等蛋白时,当蛋白浓度太低,易出现几个磁珠连一个蛋白的现象,造成肉眼可见的凝 集,影响分散的均匀性,并导致沉降。本研究中 13 μg 蛋白/mg 磁珠偶联时所得生物磁珠较为均匀,故 本研究采用 20 μg 转基因一抗修饰 75 μL 磁珠。

3.3 免疫检测与比色

磁珠转运与分离技术已广泛用于核酸等的纯化与分离,而用于免疫检测则鲜见报道。本研究利用

核酸提取仪,成功实现了基于免疫磁珠转运的转基 因蛋白免疫检测。最终得到的免疫复合物中的 HRP 酶可以催化底物 TMB 的反应,得到蓝色产物,该蓝 色产物的最大吸收波长为 650 nm;在蓝色产物中加 入 HCl 或 H₂SO₄ 时,会得到黄色终产物,此时溶液的 最大吸收波长转移至 450 nm^[5]。第8 列孔中用 TMB 显色 10 min 后,加 1 mol/L HCl 终止前后的结果见 图 4。加 HCl 后,方法的检测灵敏度提高了约 2 倍, 线性从 $R^2 = 0.9707$ 增加到 $R^2 = 0.9986$ 。方法能够 检测出低至 1 μ g/L Cry1Ab 蛋白。按文献 [19],该 结果折合约为真实 GMOs 样品中 0.5%,达到欧盟的 检测标准(低于0.9%)。本方法的重现性良好(RSD <5%)。所需的样本量为 100~300 μ L。较之同类 型的美国 Abraxis LLC 公司酶联免疫试剂盒,本方法

图 4 加 HCl 前后不同浓度的抗原 Cry1Ab 蛋白的吸 光值信号响应

Fig. 4 Absorbance response of varying Cry1Ab protein concentration with and without addition of HCl

在检出限、灵敏度及样本量等各种指标都相当。本方法较简便地实现了基于磁珠转运的酶联免疫自动 检测 ,为实现大批量、长时间和高工作强度的检测提供了可能性。

1321

本实验研究了免疫磁珠的制备方法,验证了将核酸提取仪用于免疫磁分离检测的可行性,实现了基于磁珠转运的转基因蛋白的酶联免疫检测。

References

- 1 James C. ISAAA Brief , 2008 , 39: 6
- 2 Roda A, Mirasoli M, Guardigli M, Michelini E, Simoni P, Magliulo M. Anal. Bioanal. Chem. ,2006, 384(6): 1269 ~ 1275
- 3 Emons H. Anal. Bioanal. Chem. , 2010 , 396(6): 1949 ~ 1950
- 4 LI Dong-Yang, RU Shi-Ping, WU Jian, YING Yi-Bin(李冬阳, 茹柿平, 吴坚, 应义斌). Chinese J. Anal. Chem. (分 析化学), 2010, 38(4): 573~576
- 5 Law B. Immunoassay A Practical Guide. London: Taylor & Francis Ltd , 1996: 217
- 6 XU Xia, YE Zun-Zhong, WU Jian, YING Yi-Bin(徐霞,叶尊忠,吴坚,应义斌). Chinese J. Anal. Chem. (分析化学), 2010, 38(7): 1052~1059
- 7 Lin P C , Chen S H , Wang Y , Chen M L , Adak A K H , Jih R R , Chen Y J , Lin C C. Anal. Chem. , 2009 , 81(21): 8774 ~ 8782
- 8 Deng Y, Qi D, Deng C, Zhang X, Zhao D. J. Am. Chem. Soc. , 2008, 130(1): 28 ~ 29
- 9 HE Jian-Xia(何建霞). Master Thesis of Zhejiang University of Science and Technology(浙江理工大学硕士学位论文), 2010: 1~62
- 10 Rossi L M , Quach A D , Rosenzweig Z. Anal. Bioanal. Chem. , 2004 , 380(4): 606 ~ 613
- 11 Hermanson G T. Bioconjugate Techniques , 2nd Ed. , Amsterdam: Academic Press , 2008: 576 ~ 581
- 12 Lu A H , Salabas E L , Schuth F. Angew. Chem. Int. Ed. , 2007 , 46(8) : 1222 ~ 1244
- 13 Deng H , Li X , Peng Q , Wang X , Chen J , Li Y. Angew. Chem. Int. Ed. , 2005 , 44(18): 2782 ~ 2785
- 14 Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang X, Perrett S, Yan X. Nat Nano. , 2007, 2(9): 577 ~ 583
- 15 Vansant E F, Voort P V, Vrancken KC. Characterization and Chemical Modification of the Silica Surface ,1st Ed., Amsterdam: Elsevier Science, 1995: 194
- 16 Xu X, Deng C, Gao M, Yu W, Yang P, Zhang X. Adv. Mater., 2006, 18(24): 3289 ~ 3293
- 17 Avrameas S. Immunochemistry, 1969, 6(1): 43 ~ 52
- 18 Avrameas S. Histochem. J. , 1972 , 4(4): 321 ~ 330
- 19 Volpe G, Ammid N H, Moscone D, Occhigrossi L, Palleschi G. Anal. Letters , 2006, 39(8): 1599 ~ 1609

Magnetic Beads Transfer Based Assay for Cry1 Ab Protein

LI Dong-Yang , FAN Kai , WU Jian* , YING Yi-Bin

(College of Biosystem Engineering and Food Science , Zhejiang University , Hangzhou 310029)

Abstract A novel method for the immunoassay of genetically modified organisms (GMOs) protein Cry1Ab was proposed. First the nano-magnetic beads with the diameters around 400 nm were prepared by hydrothermal method. Then , the prepared magnetic beads were modified with $--NH_2$ group using sol-gel approach. The antibodies were conjugated on the surface of magnetic beads through bi-functional agent glutaraldehyde. The immunoassay was carried out in the nucleic acid extractor which is commercial available. In this proposed method , the detection limit for Cry1Ab is less than 1 μ g/L , which is comparable to the common ELISA methods. This automatic way is promising for its rapidity and simplicity.

Keywords Genetically modified organisms; Magnetic separation; Cry1Ab protein; Magnetic beads transfer; Immunoassay

(Received 16 November 2010; accepted 21 April 2011)