1-甲基萘的振动分辨激光诱导荧光光谱研究

王录飞,吴其俊,祖莉莉*

北京师范大学化学学院,北京 100875

摘 要 在超声射流条件下得到了 1-甲基萘的激光诱导荧光光谱,并结合理论计算研究了 1-甲基萘分子的 基态和激发态的几何构型及振动信息。运用 DFT 方法在 B3LYP/6-311++G**的水平上优化了 1-甲基萘的 基态几何构型,结果表明 1-甲基萘分子基态的 S-E 和 E-S 两个构象体中,只有 S-E 构象体为稳定构型,E-S 构象是连接两个 S-E 构象的过渡态。采用 CIS 方法对 S-E 构象体的激发态进行了结构优化及振动分析,用计 算得到的激发态振动频率以及 TDDFT 方法计算的垂直激发能对 1-甲基萘的荧光光谱进行了分析与标识。 研究结果表明,1-甲基萘的 $S_0 \rightarrow S_1$ 的跃迁强度比萘的相应跃迁有所增强,但是依然存在与更高激发态之间 的 Herzberg-Teller 耦合效应。

关键词 1-甲基萘;激光诱导荧光光谱;振动谱带 中图分类号:O657.3 文献标识码:A DOI:10.3964/j.issn.1000-0593(2011)11-2965-04

引 言

萘及其同系物不仅存在于润滑油、汽油阻凝剂、电容电 解液等石化产品中,而且广泛应用于农药、驱虫剂等日常化 学品中。然而,由于多环芳烃的致癌性,萘及其衍生物也成 为人们关注和研究的重要环境污染物。高分辨荧光光谱的研 究,不仅可以为环境中痕量萘的检测提供方法,同时也揭示 了萘的基态、激发态的能级结构及能级相互作用等基础科学 问题。超声射流条件能够使样品分子的温度大大降低,从而 获得高分辨光谱^[1]。有关萘及其取代物的光谱研究报道很 多,但在谱图的解析和标识方面一直存在困难和分歧^[2-12]。 这是由于萘的 HOMO 和 LUMO 轨道分别是 $\pi_4 - \pi_5$ 及 $\pi_{s}^{*} - \pi^{*}$ 简并轨道,其线性组合而成的能量最低的两个单线 激发态 S_1 和 S_2 之间存在相消性干扰,从而导致 $S_0 \rightarrow S_1$ 的跃 迁偶极距消失。但是,由于 S_1 与 S_2 间的能级差很小,使得 $S_0 \rightarrow S_1$ 跃迁能够通过与 S_2 态之间的 Herzberg-Teller 效应 (vibronic coupling)得到强度^[3-8]。当用非氢重原子或原子团 取代萘环上的氢原子后,改变了萘环的对称性,从而改变 S₀ 与 S₁ 态之间的相对能量以及相应的耦合效应,在荧光谱图 中表现出振动谱带的强度变化[9-12]。本文中,我们获得了超 声射流条件下 1-甲基萘的激光诱导荧光光谱,用从头算的方 法研究了 1-甲基萘的基态及激发态的能量、几何构型及振动

收稿日期:2010-12-15,修订日期:2011-04-20 基金项目:国家自然科学基金项目(20673013)资助 作者简介:王录飞,1985年生,北京师范大学化学学院硕士研究生

e-mail: zull@bnu edu cn

* 通讯联系人

频率,通过与萘的荧光光谱的比较,分析并标识了 1-甲基萘 的电子振动谱带,并对 1-甲基萘的 Herzberg-Teller 效应进行 了讨论。

1 实验方法

实验装置如图 1 所示,用 Ar 气作为载气将样品的蒸气 通过一个直径为 0.5 mm 的脉冲阀(General Valve)送入真空 腔中,脉冲阀以连续进样模式工作。真空腔先由机械泵(8 $L \cdot s^{-1}$)抽真空至 10^{-1} Pa,再由分子泵($600L \cdot s^{-1}$)抽至

e-mail: wanglufei714@163.com

10⁻⁴ Pa, 通入样品气体后腔内真空维持在 0.7~1 Pa。激发 光源由二倍频(532 nm)的 Nd: YAG 激光(Continnum, Surelite Ⅱ)泵浦染料激光器(Radiant Dyes, NarrowScan)提 供,线宽约 0.1 cm⁻¹,所用染料为 DCM(Exiton),经倍频后 在 301~330 nm 波长范围内连续可调,一般能量控制在 2 mJ。激发光与进样方向垂直并在脉冲阀口下游 10 mm 处激 发样品分子,产生的荧光经正上方的透镜聚集后由光电倍增 管(Hamamasu, CR110)收集并转换成电信号,再发送至示波 器(Tektronics, TBS3032B)转换成数字信号,最后由实验室 自行编制的 Labview 程序进行积分并分析。1-甲基萘样品购 自阿拉丁试剂有限公司,纯度为 97%,使用时未进一步纯 化。

2 计算方法

采用 DFT/B3LYP 和 CIS 方法在 6-311++G** 的水平 上分别计算了 1-甲基萘基态及激发态的几何构型;用 TD-DFT/B3LYP/6-311++G** 方法计算了 1-甲基萘的垂直激 发能;运用 CIS/6-311++G** 方法计算了激发态的振动频 率,并结合计算结果对 1-甲基萘的激发谱图进行了标识。所 有的理论计算均由 Gaussian 03 程序运行^[13]。

3 结果与讨论

3.1 1-甲基萘的构型和能级

如图 2 所示,基态的 B3LYP/6-311++G** 计算结果表 明:1-甲基萘分子中甲基可以围绕 C₁—C₁₁ 键旋转形成 staggered-eclipsed(S-E)和 eclipsed-staggered(E-S)两种构象体。 其结构特征是甲基上两个 C—H 键与萘环平面交错,剩余一 个 C—H 键与萘环重叠。在 S-E 构象中,与萘环重叠的C—H 键位于萘环外侧;而 E-S 构象中,与萘环重叠的 C—H 键在 萘环内侧。其中,E-S 构象的能量比 S-E 构象的能量高 7.1 kJ·mol⁻¹,与文献中的实验和理论计算结果^[14-17](~9.1 kJ·mol⁻¹)接近。振动分析和 IRC 计算证实:S-E 构象是稳 定的构象体,而 E-S 构象是两个 S-E 构象之间的过渡态。

表1 是优化后1-甲基萘的基态(S_0)和第一激发态(S_1)的 几何构型参数。由优化后的构型可知,S-E 构象中 CH₃ 基团 的 C—H 键与萘环双键 C₁—C₂ 重叠,有利于分子的稳定, 这与 S-E 构象是稳定的构象体的结论相一致。在 1-甲基萘的 基态构型中,C₁—C₂,C₃—C₄,C₅—C₆,C₇—C₈ 键长较短, 呈现明显的双键性质。当跃迁至第一激发态后,分子内原本 呈现双键性质的四个键键长增长,键级下降;而 C₂—C₃ 和 C₆—C₇ 键的键长明显缩短,呈现双键性(图 2)。可见,从基 态至第一激发态,1-甲基萘分子的构型变化主要是萘环骨架 上碳原子之间键长的改变,即萘环上电子云的重新分布,而 萘环与甲基相连的 C₁—C₁ 键长没有明显变化,键角的变化 也不明显($\leq 1.1^\circ$),1-甲基萘从基态至第一激发态的电子跃 迁是萘环上 π — π^* 跃迁。

我们采用 TDDFT/B3LYP 方法在 $6-311++G^{**}$ 水平上 计算了 1-甲基萘的电子能级(图 3),得到 $S_0 \rightarrow S_1$ 的跃迁激发

Fig 2 Structures of 1-methylnaphthalene optimized by B3LYP/6-311 + G^{**} (ground state) and CIS/6-311++ G^{**} (first excited state) methods

Table 1 Calculated geometric parameters of 1-methylnaphthalene at the ground state (B3LYP/6-311 + G^{**}) and first excited state (CIS/6-311 + G^{**})

键长	$S_0/(m \AA)$	$S_1/(\text{\AA})$	键角	$S_0/(\degree)$	$S_1/(°)$
$C_1 - C_2$	1.379	1. 423	$C_2 - C_1 - C_9$	118.8	119.8
$C_1 - C_9$	1. 433	1.416	$C_2 - C_1 - C_{11}$	120.3	119.2
$C_2 - C_3$	1. 414	1.369	$C_9 - C_1 - C_{11}$	120.8	121.0
$C_3 - C_4$	1.372	1. 416	$C_1 - C_2 - C_3$	121.8	121.2
$C_4 - C_5$	1. 420	1.398	$C_2 - C_3 - C_4$	120.3	119.7
$C_5 - C_6$	1.374	1. 412	$C_3 - C_4 - C_{10}$	120.3	121.4
$C_5 - C_{10}$	1.419	1. 404	$C_6 - C_5 - C_{10}$	121.1	121.6
$C_6 - C_7$	1. 413	1.370	$C_5 - C_6 - C_7$	119.9	119.7
$C_7 - C_8$	1.376	1. 421	$C_6 - C_7 - C_8$	120.4	120.0
$C_8 - C_9$	1. 421	1.399	$C_7 - C_8 - C_9$	121. 3	121.8
$C_9 - C_{10}$	1. 433	1. 449	$C_1 - C_9 - C_8$	122.5	123.2
$C_{11} - H_{12}$	1.095	1.089	$C_1 - C_9 - C_{10}$	119.3	118.8
$C_{11} - H_{13}$	1.095	1.089	$C_8 - C_9 - C_{10}$	118.1	117.9
$C_{11} - H_{14}$	1.091	1.083	$C_4 - C_{10} - C_5$	121.4	122.2
$C_1 - C_{11}$	1.509	1.501	$C_4 - C_{10} - C_9$	119.4	119.0
$C_2 - H_{15}$	1.085	1.075	$C_5 - C_{10} - C_9$	119.2	118.9
$C_3 - H_{16}$	1. 084	1.074			
$C_4 - H_{17}$	1.085	1.076			
$C_5 - H_{18}$	1.085	1.076			
$C_6 - H_{19}$	1. 084	1.075			
$C_7 - H_{20}$	1. 084	1.075			
$C_8 - H_{21}$	1. 083	1.073			

能为 4. 26 eV, S_1 和 S_2 态之间的能量差为 0. 14 eV, S_2 和 S_3 态之间的能量差为 0. 73 eV。用相同方法计算萘的能级分 布,得到萘的 $S_0 \rightarrow S_1$ 的跃迁激发能为 4. 35 eV, S_1 和 S_2 态 之间的能量差为 0. 08 eV, S_2 和 S_3 态之间的能量差为 0. 82 eV。

3.2 1-甲基萘的振动分辨荧光光谱

图 4 是在超声射流条件下获得的 1-甲基萘的激光诱导荧 光光谱。谱图中, 1-甲基萘的 0% 谱带(谱峰 A, 31 767.0 cm⁻¹)强度仅次于最强谱峰 B和 J, 与萘的峰^[4]相比增强很 多。这表明 1-甲基萘的 $S_0 \rightarrow S_1$ 跃迁强度比萘有所增强。这 与我们计算得到的 1-甲基萘 S_1 和 S_2 态之间的能级差与萘相 比有所增大的结果相一致。由于 1-甲基萘比萘的分子对称性 降低, S_1 和 S_2 态之间的能级差增大, $S_0 \rightarrow S_1$ 跃迁偶极距受 到的相消性干扰减弱^[9], $S_0 \rightarrow S_1$ 跃迁的强度增强。表 2 列出 了我们运用 CIS/6-311++G** 的计算结果对 1-甲基萘实验 谱图的谱峰标识(表中所列实验频率为实验谱峰相对于 0° 谱 峰的频率差)。由于 1-甲基萘分子的 C₈ 对称性,在其全部 57 个振动模式中,有 38 个是平面内全对称振动,17 个是平面 外非全对称振动。按照 Mulliken convention 对所有振动模式 进行编号,依照频率由高到低的顺序将平面内振动编为 $\nu_1 \sim$ ν_{38} , 平面外振动模式编为 $\nu_{39} \sim \nu_{57}$ 。表中对 CIS 方法计算所得 的频率进行了校正,校正因子为 0. 91。

Fig 3 Simplified energy-level diagram of 1-methylnaphthalene predicted by TDDFT/B3LYP/6-311++G**

Fig 4 Laser induced fluorescence spectrum of 1-methylnaphthalene in a supersonic jet expansion

(a): Experimental; (b): Simulation

从表 2 可看出,除了强度极弱的 ν_{38} 和 ν_{28} ,实验中观察 到了振动频率在 $0 \sim 1 \ 100 \ {\rm cm}^{-1}$ 范围内的所有平面内振动模 式。由于 1-甲基萘 $S_0 \rightarrow S_1$ 跃迁的电子偶极距在萘环平面内, 按照 Franck-Condon 近似原理, 1-甲基萘 $S_0 \rightarrow S_1$ 荧光光谱中 平面内振动模式是跃迁允许的振动模式。表 2 的数据显示, CIS计算方法得到的振动频率与实验谱图能够较好的吻合。 对于谱线强度, CIS 计算所得到的谱峰强度数据则不能作为 定量分析的依据。但定性比较,除了谱峰 B 和 J,多数谱峰的 强度与实验结果相对应。这与萘的 $S_0 \rightarrow S_1$ 荧广谱图基本是 由 Herzberg-Teller 耦合效应而增强的谱峰所占据^[4]不同,表 明 1-甲基萘中 $S_0 \rightarrow S_1$ 跃迁偶极距受到的相消性干扰作用与 萘相比有所减弱。但是,在实验光谱 419.1 cm⁻¹处出现的强 峰 B则不属于 CIS 计算的平面内振动,相反,其频率与 CIS 计算得到的平面外振动模式 yzz 重合。Tan 等^[17] 通过转动分 辨光谱研究认为它属于通过与 S_2 态之间的 Herzberg-Teller 耦合效应获得了振动强度的平面外振动模式。对于位于 817 cm^{-1} 处的 J 峰, 实验谱带的强度远远高于 CIS 的计算强度, 有可能是此振动模式的与其他更高电子能态之间的耦合作用 而得到增强^[12]。我们根据 CIS 计算结果模拟了 1-甲基萘的 激光诱导荧光光谱,并与实验谱图相对照[图 4(b)],其中 B 峰(虚线)的谱线强度由实验谱峰得到。从图 4 可以看出, CIS 计算对实验光谱的频率预测较好,而对谱峰的强度预测则需 要综合考虑 Herzberg-Teller 耦合效应等因素。

 Table 2
 Assignment of the bands in the laser induced fluorescence spectrum of 1-methylnaphthalene

实验数据			CIS/6-311++G**		
谱带	相对频率 $/cm^{-1}$	Freq* 0. 91	标识	强度/(KM/Mole)	
А	0		0-0		
		271	38	0.31	
В	419	418	52		
С	429	423	37	2.44	
D	438	441	36	2.05	
Е	483	479	35	2,70	
F	542	528	34	16.8	
G	660	660	33	8.26	
Н	679	690	38 + 52		
Ι	761	779	32	5.05	
J	817	816	31	1. 18	
Κ	935	919	30	16.9	
L	967	972	29	4.62	
		1 010	28	0.58	
М	1 075	1 035	27	2.86	
Ν	1 088	1 064	26	3.81	

4 结 论

本文采用激光诱导荧光光谱技术和量子计算相结合的方 法研究了 1-甲基萘的基态和激发态的结构和激发能,并对激 发谱图中的振动频率进行了标识。研究结果表明,1-甲基萘 的基态只有一种稳定的构象体,即 S-E 构象;由基态至第一 激发态的跃迁是萘环平面上的 $\pi - \pi^*$ 跃迁。由激发谱图可 知,1-甲基萘的 $S_0 \rightarrow S_1$ 跃迁强度与萘相比有较大提高,但是 仍然存在和 S_2 态等更高激发态间的 Herzberg-Teller 耦合效 应。

References

- [1] Borisevich N, D'Yachenko G, Petukhov V, et al. Opt. Spectrosc., 2006, 101(5): 683.
- [2] Biswas P, Pandey P, Chakraborty T. Chem. Phys. Lett., 2008, 454: 163.
- [3] Sato T, Tokunaga K, Tanaka K. J. Phys. Chem. A, 2008, 112(4): 758.
- [4] Beck S, Powers D, Hopkins J, et al. J. Chem. Phys., 1980, 73(5): 2019.
- [5] Wartel M, Pauwels J F, Desgroux P, et al. Appl. Phys. B, 2010, 100(4): 933.
- [6] D'Yachenko G G, Petukhov V A, Semenov M A. J. Appl. Spectrosc., 2007, 74(3): 374.
- [7] Montero R, Longarte A, Martínez R, et al. Chem. Phys. Lett., 2009, 468: 134.
- [8] Montero R, Conde A P, Longarte A, et al. Chem. Phys. Chem., 2010, 11(16): 3420.
- $\left[\begin{array}{c} 9 \end{array} \right] \,$ Ramanathan V, Pandey P, Chakraborty T. Chem. Phys. Lett. , 2008, 456: 19.
- [10] Warren J A, Hayes J M, Small G J. J. Chem. Phys., 1984, 80(5): 1786.
- [11] Montero R, Longarte A, Conde A, et al. J. Phys. Chem. A, 2009, 113(48): 13509.
- [12] Jacobson B, Guest J, Novak F, et al. J. Chem. Phys., 1987, 87(1): 269.
- [13] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian, Inc., Wallingford CT., 2004.
- [14] George P, Bock C, Stezowski J, et al. J. Phys. Chem., 1988, 92(20): 5656.
- [15] Librando V, Alparone A. Polycyclic Aromat. Compd., 2007, 27: 65.
- [16] Nakai H, Kawamura Y. Chem. Phys. Lett., 2000, 318(4-5): 298.
- [17] Tan X, Majewski W, Plusquellic D, et al. J. Chem. Phys., 1991, 94(12): 7721.

Laser-Induced Fluorescence of 1-Methylnaphthalene in a Supersonic Jet Expansion

WANG Lu-fei, WU Qi-jun, ZU Li-li*

Department of Chemistry, Beijing Normal University, Beijing 100875, China

Abstract Laser-induced fluorescence excitation spectrum of $S_0 \rightarrow S_1$ transition of 1-methylnaphthalene was obtained in supersonic jet condition. Theoretical calculations were conducted to study the geometry and energy of 1-methylnaphthalene at the ground and first excited state. Geometry optimization for the ground state was performed by DFT/B3LYP methods using 6-311++G (d,p) basis set. CIS/6-311++G(d,p) method was used to study the excited state. The excitation spectrum of 1-methylnaphthalene was assigned with the help of calculated vibrational frequencies and vertical excitation energies predicted by TDDFT method. It was found that the oscillator strength of the $S_0 \rightarrow S_1$ transition was enhanced by substituting a hydrogen atom of naphthalene with the methyl group although the Herzberg-Teller vibronic coupling effect still existed.

Keywords 1-methylnaphthalene; Laser induced fluorescence; Vibronic bands

(Received Dec. 15, 2010; accepted Apr. 20, 2011)

* Corresponding author