宝鸡市街尘重金属元素含量、来源及形态特征

王利军, 卢新卫*, 雷凯, 翟雨翔, 黄静

(陕西师范大学旅游与环境学院,西安 710062)

摘要:利用 XRF 和 AAS 研究了宝鸡市街尘中重金属元素的含量水平.结果表明,街尘中 Cu、Pb、Zn、Mn、Co、Ni、Cr 和 Cd 的平均 含量分别是 123.2、408.4、715.1、804.2、15.9、48.8、126.7 和 5.5 μ g·g⁻¹,均高于世界、中国、陕西省土壤元素背景值,其中 Cu、Pb、Zn 和 Cd 超标最为突出.利用相关分析、主成分分析、聚类分析等多元统计方法解析了宝鸡市街尘中重金属元素的来 源,结果表明,Ni 和 Cr 是自然来源(当地土壤),Cu、Pb、Mn 和 Co 是人为(交通和工业)和自然(当地土壤)的混合来源;Zn 和 Cd 是人为来源(交通来源和工业来源).同时,利用修正的 BCR 连续提取技术,借助 ICP-MS 研究了宝鸡市街尘中重金属元素 的形态特征,结果表明,街尘中 Mn、Co、Ni 和 Cr 主要以残余态形式存在(48.52% 以上) Zn 和 Cd 主要以乙酸可提取态形式存 在(44.43% 和 44.08%),Cu 主要以可氧化态和残余态形式存在(48.22% 和 37.65%),Pb 主要以可还原态形式存在 (45.42%),重金属元素的迁移顺序是 Cd (90.11%) > Pb (82.33%) > Zn (79.32%) > Cu (62.35%) > Mn (51.48%) > Co (29.02%) > Ni (23.62%) > Cr (18.68%),其中 Cd、Pb、Zn、Cu 和 Mn 有 50% 以上可以发生迁移,易被生物利用,危 害较大.

关键词:街尘;重金属元素;来源;形态;宝鸡市 中图分类号:X53 文献标识码:A 文章编号:0250-3301(2011)08-2470-07

Content, Source and Speciation of Heavy Metal Elements of Street Dusts in Baoji City

WANG Li-jun , LU Xin-wei , LEI Kai , ZHAI Yu-xiang , HUANG Jing

(College of Tourism and Environment , Shaanxi Normal University , Xi'an 710062 , China)

Abstract: Heavy metal concentrations in street dust of Baoji City were investigated by using X-Ray fluorescence spectrometry (XRF) and atomic adsorption spectrometry (AAS). The results show that the mean concentrations of Cu , Pb , Zn , Mn , Co , Ni , Cr and Cd are 123. 2 , 408. 4 , 715. 1 , 804. 2 , 15. 9 , 48. 8 , 126. 7 and 5. 5 μ g[•]g⁻¹ , respectively , which are higher than those of the element background values of International , Chinese , and Shaanxi Soil , especially for Cu , Pb , Zn and Cd. The source of heavy metal elements in street dust of Baoji City was identifed by multivariate statistics analysis (correlation analysis , principal component analysis and cluster analysis) , and the results show that Ni and Cr mainly originate from natural source (local soil) ; Cu , Pb , Mn and Co have mixed sources of human activities (industry and traffic) and nature (local soil) ; Zn and Cd represent traffic and industry sources. At the same time , the speciation characteristics of heavy metals in street dust of Baoji City were investigated by using the modified BCR sequential extraction procedure and ICP-MS. The results show that Mn , Co , Ni and Cr are dominated by residue (over 48. 52%) , Zn and Cd mainly exist in acetic acid extractable part (44. 43% and 44. 08%) , Cu is rich in oxidizable (48. 22%) and residual (37. 65%) parts , Pb is mainly in reducible part (45. 42%) . The order of mobility of heavy metal elements is Cd (90. 11%) > Pb (82. 33%) > Zn (79. 32%) > Cu (62. 35%) > Mn (51. 48%) > Co (29. 02%) > Ni (23. 62%) > Cr (18. 68%) , in which of them , Cd , Pb , Zn , Cu and Mn have stronger transformation (over 50%) and higher potential harm. **Key words**: street dust; heavy metal element; source; speciation; Baoji City

街尘是城市环境的重要污染源,受城市工业生 产、交通运输、建筑施工、居住生活等人类活动强烈 影响,街尘当中累积了大量的有毒有害物质(如重 金属、多环芳烃等)^[1-3],对居民健康和城市环境具 有重要影响.重金属元素因具有持久性和难降解 性,被称为"化学定时炸弹"^[4].在街尘中累积效应 比较明显和研究比较多的是重金属元素,其具有 较大的环境污染危害和重要的环境指示意义^[5,6]. 街尘中的重金属元素来自于自然(当地土壤)及人 为活动(如工业生产、交通运输等)^[5,7-12],其环境 行为和毒性效应不仅与重金属元素的含量有关, 而且在很大程度上取决于重金属元素在环境介质 中的赋存形态、迁移转化特征以及生物可利用性 等.因此,在街尘重金属污染研究中,街尘重金属 元素的形态分析极为必要^[13~16].当前,国内外学

收稿日期:2010-09-14;修订日期:2010-11-09

基金项目: 教育部新世纪优秀人才支持计划项目(NCET-05-0861); 陕西师范大学青年基金项目

作者简介:王利军(1978~),男,博士研究生,讲师,主要研究方向为 环境评价与治理、环境污染修复,E-mail:wanglijun@snnu. edu.cn

[•] 通讯联系人 , E-mail: luxinwei@ snnu. edu. cn

者对城市街尘中重金属元素的含量、分布、来源、 形态、污染及健康风险评价进行了大量的研究^[3,5-14,17-30].然而,有关宝鸡市街尘中重金属污染方面的研究鲜见报道.

宝鸡市位于关中平原西部,西安以西约180 km 处,东经106°18′~108°03′,北纬33°35′~35°06′,现 有人口约 370 × 10⁴,市区人口约 140 × 10⁴,是陕西 省的第二大城市,也是陕西省的一个重工业城市,现 有冶金、采矿、机械加工、化工、电力、纺织、有色金属 等 35 个工业门类. 同时, 宝鸡市也是西部的一个重 要交通枢纽,是西去甘肃、宁夏、青海、新疆、西藏和 南去四川的交通要塞.近年来,宝鸡的工业(尤其是 机械制造、电子技术、桥梁制造,有色金属加工、冶金 等)、商业、交通(截止 2007 年 3 月 31 日,全市汽车 已增加到76813辆)、建筑以及城市的发展速度非常 迅速.宝鸡市南边、西边和北边三面环山,这种地形 不利于灰尘的扩散和稀释,相反有利于灰尘在该地 区的沉降 再加上渭河从城市当中自西向东穿过 将 城市分成南北2个部分,受这种自然条件的限制,宝 鸡市的发展空间非常有限,致使城市人口、商业、工 业、交通、建筑密度特别大.

本研究以宝鸡市街尘为调查对象,在对街尘基 本理化性质分析的基础上,首次系统分析了街尘中 重金属元素的含量、来源及形态特征,旨在为改善宝 鸡市城市环境提供科学依据.

1 材料与方法

1.1 样品采集与处理

按照城市功能分区(如工业、商业、交通等)布 设街尘采样点(图1).2006年2月,在一个晴好的 天气里(这种天气至少持续1周),用塑料刷子和塑 料簸箕在每个采样点采集街尘样品^[8],每个点采

图 1 宝鸡市街尘采样点示意 Fig. 1 Sampling sites of street dust in Baoji City

3~5 处混合,共采集38 个样品,每个样品重约500 g 密封在自封的聚乙烯塑料样品袋中.

将采集好的街尘样品带回实验室,在通风、避 光、室温的条件下自然风干1~2周,过1mm的尼 龙筛,去除沙子、烟头、植物根茎等外来杂物.然后用 玛瑙研钵研磨过200目尼龙筛,研磨过筛后的街尘 样品密封在自封聚乙烯塑料样品袋中待分析.

1.2 样品分析与质量控制

利用 PHSJ-4A 型 pH 计(上海雷磁)、马弗炉、 Mastersizer-S 型激光粒度仪(英国 Malvern 仪器有限 公司)分析街尘的 pH、烧失量(LOI)及粒径组成等 基本理化性质.

采用 PW2403 型 X-Ray 荧光光谱仪(荷兰 PANalytical ,原飞利浦仪器公司)分析街尘中 Cu、 Pb、Zn、Mn、Co、Ni 和 Cr 的含量水平.街尘中 Cd,采 用 HNO₃-HF-HClO₄ 混酸消化,TAS-990 型石墨炉原 子吸收分光光度计(北京普析通用仪器有限责任公 司)测定.

利用修正的 BCR 连续提取技术^[31,32](表 1), 借助 ICP-MS 分析了街尘中 Cu、Pb、Zn、Mn、Co、Ni、 Cr 和 Cd 在不同形态中的含量水平.

表	1 修	§正 Ⅰ	BCR	法提	取分	析流程
বহ	ւ թ	STE I	U K	広炡	収刀	们们作

Table 1 Extracting and analytical flow of the modified BCR									
步骤	提取剂	样品:溶液/g•mL ⁻¹	提取时间	形态					
1	0.11 mol/L HOAc	1:40	振荡 16 h	乙酸可提取态					
2	0.5 mol/L $NH_2 OH \cdot HCl pH = 1.5$	1:40	振荡 16 h	可还原态					
	8.8 mol/L H ₂ O ₂ ,pH 2 ~ 3 &5℃水浴	1:10	1 h ,偶尔振荡						
3	8.8 mol/L H ₂ O ₂ ,pH 2 ~ 3 &5℃水浴	1:10	1 h ,偶尔振荡	可氧化态					
	1.0 mol/L NH_4 Ac $pH = 2$	1:50	振荡 16 h						
4	王水或 HCl/HNO3/HClO4	1:10		残余态					

在分析过程中,利用土壤标样 GSS1 和水系沉 积物标样 GSD12(购自地矿部物探化所)来进行质 量控制,所分析元素的误差均在5%以内.

1.3 数据分析

本研究利用统计学软件 SPSS 13.0 对宝鸡市街 尘中重金属元素的含量数据进行了描述性统计分 析、相关分析、主成分分析及聚类分析,并利用多元 统计分析进行了重金属元素的来源分析.

2 结果与讨论

2.1 街尘基本理化性质

宝鸡市街尘的基本理化性质见表 2. 由表 2 可 知,宝鸡市街尘的 pH 值范围是 8.02~10.14,平均 值是 8.98,呈微碱性;烧失量(LOI)的范围是 2.16%~18.84%,平均值是 8.77%;粒径分析表 明,宝鸡市街尘主要由 5~50 μm(71.30%)的粒径 颗粒组成.

表 2 宝鸡市街尘基本理化性质

Table 2	Physicochemical properties of street dust in Baoji City								
理化指标	рН	LOI /%	<5 μm /%	5~50 μm /%	>50 μm /%				
最小值	8.02	2.16	2.75	15.47	1.78				
最大值	10.14	18.84	15.90	79.96	24.92				
平均值	8.98	8.77	11.62	71.30	14.98				

2.2 街尘中重金属元素的含量

宝鸡市街尘中重金属元素的测试统计结果见表 3. 由表 3 可知, 宝鸡市街尘中 Cu、Pb、Zn、Mn、Co、 Ni、Cr和Cd的含量范围分别是77.9~259.9、 140.6~1864.6、384.9~1778.3、544.5~2335.8、 12.6~22.9、33.3~219.3、98.9~214.5和2.9~ 7.6 μg•g⁻¹,平均含量分别是 123.2、408.4、715.1、 804.2、15.9、48.8、126.7 和 5.5 μg·g⁻¹. 宝鸡市街尘 中所分析的重金属元素的平均含量均高于世界、中 国、陕西省土壤元素背景值,Cu、Pb、Zn、Mn、Co、Ni、Cr 和 Cd 分别是世界土壤元素背景值的 4.1、11.7、 79.5、0.8、2.0、1.0、1.8、15.7 倍,中国土壤元素背 景值的 5.4、15.7、9.6、1.4、1.2、1.8、2.1、56.7 倍 陕西省土壤元素背景值的 5.8、19.1、10.3、1.4、 1.5、1.7、2.0、58.5 倍 其中 Cu、Pb、Zn 和 Cd 超标最 为突出,分别是世界、中国和陕西土壤元素背景的4 ~6、12~20、10~80、16~60倍. 从标准偏差和变异

表 3	宝鸡市街尘重金属元素的含量 / $\mu \mathrm{g}^{-1}$	
-----	---------------------------------------	--

Table 2	Contonto of hoory	motal	alamanta of	atreat	duct in	Danii	City /	
rable 5	Contents of neavy	metai	elements of	sneet	uust m	Daop	GILY/	µg-g

			,			5 5 10 0		
元素	最小值	最大值	平均值	标准偏差	变异系数	世界土壤元 素背景值 ^[33]	中国土壤元 素背景值 ^[33]	陕西土壤 元素背景 ^[33]
Cu	77.9	259.9	123.2	43.25	0.35	30	22.6	21.4
Pb	140.6	1 864.6	408.4	295.94	0.72	35	26.0	21.4
Zn	384.9	1 778.3	715.1	320.08	0.45	9	74.2	69.4
Mn	544.5	2 335.8	804.2	368.62	0.46	1 000	583	557
Co	12.6	22.9	15.9	2.31	0.15	8	12.7	10.6
Ni	33.3	219.3	48.8	29.97	0.61	50	26.9	28.8
Cr	98.9	214.5	126.7	19.67	0.16	70	61.0	62.5
Cd	2.9	7.6	5.5	1.19	0. 22	0.35	0.097	0.094

系数来看,Cu、Pb、Zn和Mn等的标准偏差和变异系数较大,反映其受人类活动影响较大.

同国内外其他城市街尘中重金属元素的含量 (表4)比较发现:宝鸡市街尘中 Cu 含量高于 Luanda、Hong Kong、Kayseri、Oslo、重庆市和西安 市,低于 Avilés、Madrid、上海市和成都市; Pb 的含量 高于 Luanda、Hong Kong、Kayseri、Oslo、重庆市、广州 市、西安市和成都市,低于 Avilés、Madrid 和上海市; Zn 的含量高于 Luanda、Kayseri、Oslo、Madrid、重庆 市、广州市和西安市,低于 Hong Kong、Avilés、上海 市和成都市; Mn 的含量低于 Avilés 和 Oslo,高于其 他城市(有可利用的数据); Ni 的含量低于上海市和 成都市,高于其他城市(西安市没有可利用的数 据); Cr 的含量低于上海市和西安市,高于其他城市 (Oslo 没有可利用的数据); Cd 的含量低于 Avilés, 高于其他城市(Hong Kong、Madrid 和西安市没有可 利用的数据). 不同城市街尘中重金属元素的含量 差异可能与其来源及人类活动的强度、方式的不同 等因素有关.

2.3 街尘中重金属元素的来源分析

2.3.1 重金属元素的相关分析

表 5 是宝鸡市街尘中重金属元素之间的相关分析结果.由表 5 可知,宝鸡市街尘中 Cu-Pb(0.416)、 Cu-Mn(0.548)、Pb-Mn(0.535)、Pb-Co(0.469)之间 存在显著正相关(*p* < 0.01); Ni 和 Cr 之间存在显著 正相关(0.793,*p* < 0.01),但二者和其他重金属元 素之间不存在相关关系; Zn、Cd 和其他重金属元素 之间不存在相关关系.

2.3.2 重金属元素的主成分分析

宝鸡市街尘中重金属元素的主成分分析结果见 表 6. 由表 6 可知,主成分分析提取出 5 个特征值 >1的因子(主成分),因子 1(1.817)、因子 2 (1.774)、因子 3(1.331)、因子 4(1.112)和因子 5 (1.033)累积方差贡献率为 88.3%.因子 1 由 Ni 表 4 宝鸡市和其他城市街尘重金属元素的含量比较¹⁾ / μ g·g⁻¹

Table 4 Comparison of heavy metals contents of street dusts in Baoji and others cities/ $\mu g \cdot g^{-1}$									
城市名称	Cu	Pb	Zn	Mn	Co	Ni	Cr	Cd	文献
Luanda	42	351	317	258	2.9	10	26	1.1	[8]
Hong Kong	110	120	3 840	594	9.52	28.6	124	/	[10]
Avilés	183	514	4 892	1661	7.03	27.5	41.6	22.3	[11]
Oslo	123	180	412	833	19	41	/	1.4	[12]
Madrid	188	1 927	476	362	3	44	61	/	[12]
Kayseri	36.6	74.8	112	237	16.5	44.9	29	2.53	[13]
重庆市	79.38	75.62	169.67	/	/	22.17	87.26	4.95	[22]
上海市	235.89	416.63	906.29	/	/	92.19	162.59	1.58	[34]
广州市	176	240	586	481	13	23	78.8	2.41	[35]
西安市	94.98	230. 52	421.46	687	/	/	167.28	/	[5]
成都市	240	372	1078	/	/	82	112	4.33	[36]
宝鸡市	123.2	408.4	715.1	804.2	15.9	48.8	126.7	5.5	本研究

1) "/"表示没有可利用的数据

表 5 宝鸡市街尘重金属元素的相关分析¹⁾

Table 5 Correlation analysis of heavy metal elements of street dust in Baoji City

	Cu	Pb	Zn	Mn	Co	Ni	Cr	Cd
Cu	1							
Pb	0.416**	1						
Zn	-0.013	0.093	1					
Mn	0. 548 * *	0. 535 * *	0.125	1				
Co	0.206	0.469 * *	0.216	0.202	1			
Ni	0.006	0.040	-0.080	- 0. 091	0.266	1		
Cr	0.050	0.024	-0.012	0.159	0.267	0. 793 * *	1	
Cd	0.076	0.297	0.169	0.098	- 0. 059	- 0. 155	-0.101	1

1) * * 表示在 p < 0.01 水平显著相关

表6 宝鸡市街尘重金属元素的主成分分析

Fable 6	Principal c	component	analysis	s of	heavy	metal	elements	of	street	dust	in	Baoi	i C	it
	r morpar e	Joinponone	carrier y cont		moury	moun	oronionico	~	ou ou	c. c. c. c		Duop		

二主		廿回府				
儿杀	1	2	3	4	5	共回反
Cu	0.007	0.845	0.117	- 0. 001	- 0. 089	0.736
Pb	- 0. 035	0.497	0.673	0.367	- 0. 059	0.839
Zn	-0.037	0.023	0.110	0.090	0.977	0.977
Mn	0.026	0.886	0.109	0.059	0.141	0.821
Co	0.203	0.083	0.904	-0.121	0.167	0.908
Ni	0.928	- 0. 086	0.149	-0.058	- 0. 090	0.902
Cr	0.952	0.110	0.037	-0.042	0.045	0.923
Cd	-0.075	0.046	-0.003	0.972	0.095	0.962
特征值	1.817	1.774	1.331	1.112	1.033	
方差贡献率/%	22.7	22.2	16.6	13.9	12.9	
累积方差贡献率/%	22.7	44.9	61.5	75.4	88.3	

(0.928)和 Cr(0.952)构成,方差贡献率为22.7%. 因子2主要由Cu(0.845)和 Mn(0.886)及适量的 Pb(0.497)构成,方差贡献率为22.2%.因子3由 Pb(0.673)和 Co(0.904)构成,方差贡献率为 16.6%.Cd(0.972)和 Zn(0.977)分别构成因子4 和因子5,方差贡献率分别为13.9%和12.9%. 2.3.3 重金属元素的聚类分析 图 2 是宝鸡市街尘中重金属元素的聚类分析结 果.由图 2 可知,聚类分析将宝鸡市街尘中所分析的 重金属元素分为以下 5 类,即:Ni-Cr、Cu-Mn、Pb-Co、 Zn 和 Cd,类 2 和类 3 一起构成一个更高水平的类, 说明有相同来源,类 4 和类 5 也一起构成一个更高 水平的类,说明有另外一个相同来源. 2.3.4 重金属元素的来源

Fig. 2 Cluster analysis of heavy metal elements of street dust in Baoji City

宝鸡市街尘中 Cu、Pb、Zn 和 Cd 的含量远远高 于世界、中国和陕西省土壤元素背景值,受人类活动 影响强烈,可能主要是人为来源; Mn、Co、Ni 和 Cr 的 含量接近或略高于世界、中国和陕西土壤元素背景 值,受人类活动影响较小,可能主要是自然来源(当 地土壤).依据相关分析、主成分分析及聚类分析结 果可以推断出宝鸡市街尘中重金属元素主要有3种 来源: Cu、Pb、Mn 和 Co 是人为(工业来源和交通来 源)和自然(当地土壤)的混合来源; Zn 和 Cd 是人 为来源(工业来源和交通来源); Ni 和 Cr 主要是自 然来源(当地土壤).

第一组元素 Ni 和 Cr,在相关分析和主成分分 析中存在显著正相关关系,同时与其他重金属元素 之间不存在相关关系,在聚类分析中被聚为一类.Ni 和 Cr在所有街尘样品中,接近或略微高于当地土壤 元素背景值,说明主要是自然来源(当地土壤).

第二组元素 Cu、Pb、Mn 和 Co,在相关分析和主 成分分析中显著正相关,在聚类分析中被聚为一大 类.研究表明,汽车金属部件的磨损可以释放 Cu^[3,9],车辆轮胎、润滑剂、建筑材料及大气粉尘中 均含有 Pb^[37].宝鸡市绝大多数街尘样品中 Cu 和 Pb 的含量远远高于当地土壤元素背景值,尤其是在一 些重交通区和工业区尤为显著,说明宝鸡市街尘中 Cu、Pb 主要是交通来源和工业来源.Mn 和 Co 在绝 大多数街尘样品中,接近或略微高于当地土壤元素 背景值,只是在一些重交通区和工业区含量较高,说 明宝鸡市街尘中 Mn 和 Co 以自然来源(当地土壤) 为主,其次部分来自工业生产等人为活动.

第三组元素 Zn 和 Cd 在所有街尘样品中含量 远远高于当地土壤元素背景值,尤其是在一些重交 通区和工业区.汽车轮胎和车体的机械磨损及润滑 油的泄露可以引起街尘中 Zn 和 Cd 含量的升 高^[3,10,12].因此,可以推断宝鸡市街尘中 Zn 和 Cd 明主要是人为来源(交通来源和工业来源).

2.4 街尘中重金属元素的形态特征

图 3 给出了宝鸡市街尘中重金属元素各形态含 量所占的质量分数.从图 3 可以看出,宝鸡市街尘 中,Mn、Co、Ni和Cr主要以残余态形式存在(残余 态占四态总和的 48.52% 以上) "Zn 和 Cd 主要以乙 酸可提取态形式存在(乙酸可提取态分别占四态总 和的 44.43% 和 44.08%), Cu 主要以可氧化态和残 余态形式存在(可氧化态和残余态分别占四态总和 的 48.22% 和 37.65%), Pb 主要以可还原态形式存 在(可还原态占四态总和的 45.42%). 在重金属元 素 BCR 形态分析中,残余态是"稳定态",比例越 高,可迁移部分、生物可利用部分越少,对环境的影 响也就越小;乙酸可提取态、可还原态和可氧化态是 "非稳定态",比例越高,可迁移部分、生物可利用部 分越高,对环境影响也就越大.由图3可见,在酸性 条件下,重金属元素迁移顺序是:Zn(44.43%) > Cd(44.08%) > Mn(27.75%) > Co(13.55%)> Pb (11.63%) > Cu (5.33%) > Ni (3.85%) > Cr (2.70%) 其中 Zn 和 Cd 易迁移 易被生物利 用,危害较大;在还原性条件下,重金属元素迁移顺 序是: Pb (45.42%) > Cd (24.26%) > Mn (18.33%) > Zn (15.61%) > Co (9.58%) > Ni(9.41%) > Cu(8.81%) > Cr(3.48%) 其中 Pb 易迁移,易被生物利用,危害较大;在氧化性条件下, 重金属元素迁移顺序是:Cu(48.22%) > Pb (25.28%) > Cd (21.78%) > Zn (19.28%) >Cr(12.50%) > Ni(10.36%) > Co(5.90%) >Mn (5.41%),其中 Cu 易迁移,易被生物利用,危害 较大;在街尘质中,重金属元素整体迁移顺序是:Cd (90.11%) > Pb (82.33%) > Zn (79.32%) >Cu(62.35%) > Mn(51.48%) > Co(29.02%)> Ni (23.62%) > Cr (18.68%) 其中 Cd、Pb、Zn、 Cu和 Mn 有 50% 以上可以发生迁移,易被生物利

用,危害较大.这一结果与Tokahoglu等^[13]的研究结 果,即:Cd(93.3%) > Zn(83.8%) > Pb (77.2%) > Co(75.9%) > Mn(73.0%) > Ni (60.1%) > Cu(59.0%) > Cr(58.6%)略有差 异,但均反映出Cd、Pb、Zn和Mn均容易发生迁移, 易被生物利用,危害较大.

3 结论

(1) 重金属元素含量分析表明,街尘中 Cu、Pb、 Zn、Mn、Co、Ni、Cr 和 Cd 的平均含量分别是 123.2、 408.4、715.1、804.2、15.9、48.8、126.7 和 5.5 µg•g⁻¹.街尘中所分析的重金属元素含量均高于世 界、中国、陕西土壤元素背景值,其中 Cu、Pb、Zn 和 Cd 超标最为突出.

(2)街尘中重金属来源分析结果表明,Ni和Cr 主要是自然来源(当地土壤),Cu、Pb、Mn和Co是人 为(交通来源和工业来源)和自然(当地土壤)的混 合来源 Zn和Cd主要是人为来源(交通来源和工业 来源).

(3) 形态分析表明,街尘中 Mn、Co、Ni 和 Cr 主要以残余态形式存在(48.52%以上),Zn 和 Cd 主要以乙酸可提取态形式存在(44.43%和44.08%), Cu 主要以可氧化态和残余态形式存在(48.22%和 37.65%),Pb 主要以可还原态形式存在(48.22%和 37.65%),Pb 主要以可还原态形式存在(45.42%). 在街尘中,重金属元素的迁移顺序是:Cd (90.11%) > Pb (82.33%) > Zn (79.32%) > Cu (62.35%) > Mn (51.48%) > Co (29.02%) > Ni (23.62%) > Cr (18.68%),其中 Cd、Pb、Zn、 Cu 和 Mn 有 50%以上可以发生迁移,易被生物利 用 危害较大.

参考文献:

- [1] Xie S J, Dearing J A, Boyle J F, et al. Association between magnetic properties and element concentrations of Liverpool street dust and its implications [J]. Journal of Applied Geophysics, 2001, 48(2): 83–92.
- [2] Akther M S, Madany I M. Heavy metals in street and house dust in Bahrain [J]. Water, Air, and Soil Pollution, 1993, 66 (1-2): 111-119.
- [3] 向丽,李迎霞,史江红,等.北京城区道路灰尘重金属和多 环芳烃污染状况探析[J].环境科学,2010,**31**(1):159-167.
- [4] Stigliani W M, Doelman P, Salomons W, et al. Chemical time bombs-predicting the unpredictable [J]. Environment, 1991, 33 (4): 4-30.
- [5] Han Y M, Du P X, Cao J J, et al. Multivariate analysis of heavy metal contamination in urban dust of Xi'an, Central China [J].

Science of the Total Environment , 2006 , 355(1-3): 176-186.

- [6] Sezgin N, Ozcan H K, Demir G, et al. Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway[J]. Environment International, 2004, 29(7): 979-985.
- [7] Al-Khashman O A. The investigation of metal concentrations in street dust samples in Aqaba city, Jordan [J]. Environmental Geochemistry and Health, 2007, 29(3): 197-207.
- [8] Ferreira-Baptista L, Miguel E D. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropic urban environment [J]. Atmospheric Environment, 2005, 39 (25): 4501-4512.
- [9] Al-Khashman O A. Heavy metal distribution in dust, street dust and soil from the work place in Karak Industrial Estate, Jordan [J]. Atmospheric Environment, 2004, 38(39): 6803-6812.
- [10] Yeung Z L L , Kwok R C W , Yu K N. Determination of multielement profile of street dust using energy dispersive X-ray fluorescence (EDXRF) [J]. Applied Radiation and Isotopes, 2003, 58(3): 339-346.
- [11] Ordóñez A, Loredo J, Miguel E D, et al. Distribution of heavy metals in the street dusts and soils of an industrial city in Northern Spain [J]. Archives of Environmental Contamination and Toxicology, 2003, 44(2): 160–170.
- [12] Miguel E D , Llamas J F , Chacón E , et al. Origin and patterns of distribution of trace elements in street dust: unleaded petrol and urban lead [J]. Atmospheric Environment , 1997 , 31 (17): 2733-2740.
- [13] Tokahoğlu Ş, Kartal Ş. Multivariate analysis of the data and speciation of heavy metals in street dust samples from the organized industrial district in Kayseri (Turkey) [J]. Atmospheric Environment, 2006, 40(16): 2797-2805.
- [14] Banerjee A D K. Heavy metal levels and solid phase speciation in street dusts of delhi , India [J]. Environmental Pollution , 2003 , 123(1): 95-105.
- [15] Lu Y , Zhu F , Chen J , et al. Chemical fractionation of heavy metals in urban soils of Guangzhou , China [J]. Environmental Monitoring and Assessment , 2007 , 134(1-3): 429-439.
- [16] Singh K P , Mohan D , Singh V K , et al. Studies on distribution and fractionation of heavy metals in Gomti river sediments-a tributary of the Ganges , India [J]. Journal of Hydrology , 2005 , 312(1-4): 14-27.
- [17] Ahmed F, Ishiga H. Trace metal concentrations in street dusts of Dhaka City, Bangladesh [J]. Atmospheric Environment, 2006, 40(21): 3835-3844.
- [18] Joshi U M, Vijayarghavan K, Balasubramanian R. Elemental composition of urban street dusts and their dissolution characteristics in various aqueous media [J]. Chemosphere, 2009, 77(4): 526-533.
- [19] 李海雯,陈振楼,王军,等.基于GIS的上海城市灰尘重金 属空间分布特征研究[J].环境科学学报,2007,27(5): 803-809.
- [20] 刘春华,岑况.北京市街道灰尘的化学成分及其可能来源 [J].环境科学学报,2007,27(7):1181-1188.

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

- [21] 朱伟,边博,阮爱东.镇江城市道路沉积物中重金属污染的 来源分析[J].环境科学,2007,28(7):1584-1589.
- [22] 李章平,陈玉成,杨学春,等.重庆市主城区街道地表物中 重金属的污染特征[J].水土保持学报,2006,20(1):114-116.
- [23] 张菊,邓焕光,陈振楼,等.上海市区街道灰尘重金属污染研究[J].土壤通报,2007,38(4):727-731.
- [24] Ahmed F, Bibi M H, Ishiga H. Environmental assessment of Dhaka City (Bangladesh) based on trace metal contents in road dusts[J]. Environmental Geology, 2006, 51(6): 975-985.
- [25] Christoforidis A, Stamatis N. Heavy metal contamination in street dust and roadside soil along the major national road in Kavala's region, Greece[J]. Geoderma, 2009, 151(3-4): 257-263.
- [26] Shi G , Chen Z , Bi C , et al. Comprehensive assessment of toxic metals in urban and suburban street deposited sediments (SDSs) in the biggest metropolitan area of China [J]. Environmental Pollution , 2010 , 158(3): 694-703.
- [27] Wei B G , Jiang F Q , Li X M , et al. Spatial distribution and contamination assessment of heavy metals in urban road dusts from Urumqi , NW China[J]. Microchemical Journal , 2009 , 93 (2): 147-152.
- [28] Zheng N, Liu J S, Wang Q C, et al. Health risk assessment of heavy metal exposure to street dust in zinc smelting district, Northeast China [J]. Science of the Total Environment, 2010, 408(4): 726-733.
- [29] 郑小康,李春晖,黄国和,等.保定城区地表灰尘污染物分

布特征及健康风险评价[J].环境科学学报,2009,29(10): 2195-2202.

- [30] 常静,刘敏,李先华,等.上海地表灰尘重金属污染的健康 风险评价[J].中国环境科学,2009,29(5):548-554.
- [31] Sahuquillo A, Rauret G, Bianchi M, et al. Mercury determination in solid phases from application of the modified BCR-sequential extraction procedure: a valuable tool for assessing its mobility in sediments [J]. Analytical and Bioanalytical Chemistry , 2003 , 375(4): 578-583.
- [32] Umoren I U, Udoh A P, Udousoro I I. Concentration and chemical speciation for the determination of Cu, Zn, Ni, Pb and Cd from refuse dump soil using the optimized BCR sequential extraction procedure [J]. Environmentalist, 2007, 27(2): 241– 252.
- [33] 国家环境保护局,中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990.87-90,330-496.
- [34] 史贵涛,陈振楼,许世远,等.上海城市公园土壤及灰尘中 重金属污染特征[J].环境科学,2007,**28**(2):238-242.
- [35] Duzgoren-Aydin N S , Wong C S C , Aydin A , et al. Heavy metal contamination and distribution in the urban environment of Guangzhou , SE China [J]. Environmental Geochemistry and Health , 2006 , 28(4): 375-391.
- [36] 施择明,倪师军,张成红.成都市近地表大气尘的地球化学 特征[J].地球与环境,2004,**32**(3-4):53-58.
- [37] 李崇,李发云,张营,等.沈阳市街道灰尘中重金属的空间 分布特征研究[J]. 生态环境,2008,**17**(2):560-564.