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Table 1  Error rate table of identification of six pairs of human cancerous and adjacent normal bladder tissue samples using learn—
ing vector quantization

1 2
One pair of data set used for training Two pairs of data set used for training
Samples Error rate of identification Error rate of identification Error rate of identification Error rate of identification
for cancerous regions for normal regions for cancerous regions for normal regions
(%) (%) (%) (%)
UH0007 15.58 3.85 1.04 9.08
UHO0010 14.18 0 10.73 0.64
UHO0103 6.98 0 6.84 0.38
UHO112 4.84 1.07 2.07 2.40
UH0201 23.38 0 9.09 0
UH0208 8.95 0 0.89 0
Mean 12.32 0.82 5.11 2.08
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Fig.5 Mean mass spectral plots of a mouse brain section: the mass spectral of white matter in

mouse brain section ( b) mass spectral of gray matter in mouse brain section
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Artificial Neural Networks Method of Classification and Identification for

Mass Spectrometry Imaging Data of Biological Tissue

XIONG Xing-Chuang” ' > FANG Xiang® OU YangZheng’ JIANG You’ HUANG Zedian® ZHANG Yu-Kui'
"( School of Life Science Beijing Institute of Technology Beijing 100081)
> ( National Institute of Metrology Beijing 100013)
*( Weldon School of Biomedical Engineering Purdue University West Lafayette 47907 USA)

Abstract Mass spectrometry imaging ( MSI)  the combination of molecular mass analysis and spatial infor—
mation provides visualization of molecules on complex biological surfaces thus is currently getting a signifi—
cant amount of attention in the mass spectrometric community. One important problem in this researching field
is how to develop an effective method of classification and identification for MSI data especial for identifying
the cancerous tissue from adjacent normal tissue and classifying the different functional regions in a complex
biological tissue. For this purpose we developed a new method containing image reconstruction from raw
mass spectral data MSI data pre-processing classification of tissue regions from background regions by self-—
organizing feature map and identification of special interesting regions from the whole tissue regions by learning
vector quantization. The MSI data of six pairs ( 12 tissue samples) of human cancerous and adjacent normal
bladder tissue samples were used to test the effect of this method. The result showed an error rate of less than
23.38% for identification of cancerous regions and an error rate of less than 9.08% for identification of the
adjacent normal regions. The method was also tested to classify white matter and gray matter regions of three
adjacent slices of mouse brain tissue. The slice in the middle was used to train and to establish an
identification model; the other two slices were used to test the model. The inconsistent rate of the identification
results by using self-organizing feature map is less than 4% comparing with the results using learning vector
quantization. This indicated that the method could be performed simply and efficiently to extend the capabili—
ty of MSI and underline its potential to be a regular tool applied to study on clinical application.
Keywords Mass spectrometry imaging; Classification and identification; Self-organizing feature map; Learn—
ing vector quantization
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