LC - MS/MS 同时测定人血浆中的利培酮和 9 - 羟基利培酮

李红霞1 杨东菁2 范 頔3 汪雪芹4* 邢向伟5

(1. 河南省肿瘤医院药剂科 河南 郑州 450003; 2. 河南大学医学院,河南 开封 475001; 3. 河南科技大学动物科技学院,河南 洛阳 471003; 4. 河南省食品药品检验所,河南 郑州 450003; 5. 河南中医学院,河南 郑州 450003)

摘要:目的 采用 LC – MS/ MS 法检测人血浆中的利培酮及其活性代谢产物 9 – 羟利培酮。方法 采用 BEH C_{18} 色谱柱 (50 mm × 2.1 mm ,1.7 μ m) 流动相 A 相为乙腈、B 相为 0.01 mol • L $^{-1}$ 醋酸铵 (甲酸调 pH3.4) 梯度洗脱 流速 0.2 mL • min $^{-1}$ 柱温 45 $^{\circ}$ C 进样量 3 μ L。利培酮、9 – 羟利培酮及盐酸丁螺环酮内标的检测离子对分别为: m/z 411.42 \rightarrow 191.19、427.45 \rightarrow 207.18、386.43 \rightarrow 122.27。结果 利培酮、9 – 羟利培酮的线性范围分别为 0.66 \sim 42.24、0.65 \sim 41.60 ng • mL $^{-1}$ (r = 0.997 p = 5);在人血浆基质中 高、中、低浓度 (1.3、5.2、21.12 ng • mL $^{-1}$) 的日内、日间 p 均小于 15%;利培酮、9 p 关利培酮方法的回收率分别为 89% p 109%、97% p 107%。6份不同来源的血浆基质效应研究证实,该样品预处理方法对血浆中的利培酮和 9 p 年利培酮测定无干扰。结论 所建方法处理简单、灵敏、特异性高,定量准确,可为利培酮制剂的临床药物动力学研究提供分析方法。

关键词: 利培酮;9-羟利培酮;高效液相串联质谱法;血药浓度

中图分类号:R969

文献标志码:A

文章编号:1006-0103(2011)04-0369-03

Determination of Risperidone and 9 - hydroxyrisperidone in human plasma by LC - MS/MS

LI Hong – xia¹ ,YANG Dong – jing² ,FAN Di³ ,WANG Xue – qin^{4*} ,XING Xiang – wei⁵

(1. Henan Province Tumour Hospital, Zhengzhou, Henan, 450003 P. R. China; 2. Medical College of Henan University, Kaifeng, Henan, 475001 P. R. China; 3. Henan University of Science and Technology School, Luoyang, Henan, 471003 P. R. China; 4. Henan Province Institute of Food and Drug Control, Zhengzhou, Henan, 450003 P. R. China; 5. Henan College of TCM, Zhengzhou, Henan, 450003 P. R. China; 6. China; 7. China; 8. China; 8

Abstract: OBJECTIVE To establish a method for determination of Risperidone and 9 – hydroxyrisperidone in human plasma by HPLC – MS/MS. METHODS BEH C_{18} (50 mm × 2.1 mm ,1.7 μm) ,the mobile phase consisted of A(acetonitrile) and B(0.01 mol·L⁻¹ ammonium acetate) (formic acid adjust pH3.4) ,gradient elution at flow rate of 0.2 mL·min⁻¹ ,column temperature was 45 °C and inject volume 3 μL. With positive ion MRM detection of Risperidone(m/z 411.42 \rightarrow 191.19) and 9 – hydroxyrisperidone (m/z 427.45 \rightarrow 207.18) ,using Buspirone hydrochloride (m/z 386.43 \rightarrow 122.27) as internal standard ,respectively. RESULTS A good linearity was obtained in the range of risperidone 0.66 – 42.24 ng·mL⁻¹ (r = 0.997 ,n = 5) and 9 – hydroxyl – Risperidone 0.65 – 41.60 ng·mL⁻¹ (r = 0.997 ,n = 5) with 9 – hydroxyrisperidone's intra – day RSD and inter – day RSD were less than 15%. The recovery was within 89% – 109% and 97% – 107%. Plasma matrix effect test showed endogenous matrix had no effect on quantification of Risperidone and 9 – hydroxyrisperidone. CONCLUSION A rapid sensitive and accurate LC – MS/MS method was developed for the determination of Risperidone and 9 – hydroxyrisperidone in human plasma.

Key words: Risperidone; 9 - Hydroxyrisperidone; LC - MS/MS; Concentration

CLC number: R969 **Document code**: A **Article ID**: 1006 – 0103(2011) 04 – 0369 – 03

利培酮(Risperidone)是继氯氮平后的第一个非典型抗精神病药,为 D_2 拮抗剂,体内的主要代谢产物是 9 – 羟基利培酮,活性是母药的 $70\%^{[1]}$ 。现根据中国新药审批办法的相关规定 $^{[2-3]}$ 参照文献 $^{[4]}$,在健康人体单剂量口服利培酮分散片后,采用LC – MS/MS 法测定了血浆中的利培酮及 9 – 羟利培酮,方法简单灵敏、分析时间短、实用性强,可用于其临床上的药物动力学研究。

1 实验部分

1.1 仪器与试药

Acquity UPLC 超高效液相色谱仪、Quattro Premier 串联质谱检测器(美国 Waters)。利培酮(RIP,中国药品生物制品检定所 批号:100570-200401);9-羟基利培酮(9-OH-RIP,美国 Sigma);盐酸丁螺环酮内标(IS,西南合成制药股份有限公司 批号:0304002);乙腈、甲基叔丁基醚为色谱纯;其余试剂

作者简介: 李红霞(1964—) ,女 ,从事医院药学工作。Email: 1102531487@ qq. com

^{*} 通信作者(Correspondent author) ,Email: wangxueqin2008@126.com

为分析纯。

1.2 方法与结果

1.2.1 色谱条件 采用 Acquity Uplctm Beh C_{18} 色谱柱(50 mm × 2.1 mm ,1.7 μ m); 流动相 A 为乙腈、B 为 0.01 mol·L⁻¹醋酸铵(甲酸调 pH3.4) 梯度洗脱程序为: 0 ~ 2.2 min、A – B(30:70) 2.2 ~ 2.5 min、70% ~ 10% B ,2.5 ~ 3.5 min、A – B(90:10) ,3.5 ~ 3.8 min、10% ~ 70% B ,3.8 ~ 5 min、70% B; 流速 0.2 mL·min⁻¹; 柱温 45 °C; 进样量 3 μ L。质谱采用电喷雾电离源(ESI+) ,MRM 扫描模式; 喷雾电压 3.5 kV; 采用氮气作为雾化气和辅助气,雾化气流量 499 L·h⁻¹ 辅助气流量 46 L·h⁻¹; 离子源温度 110 °C; 碰撞气为氩气,压力为 0.2 mL·min⁻¹; MRM 监测离子对: RIP m/z 411. 42 \rightarrow 191. 19; 9 - OH – RIP m/z 427. 45 \rightarrow 207. 18 ,内标 m/z 386. 43 \rightarrow 122. 27。

1.2.2 溶液的制备 分别称取适量 RIP、9 – OH – RIP 和内标 ,用甲醇溶解 ,再用乙腈 – 水(1:1) 稀释制成 $21.12 \times 20.80 \times 0.202 \ \mu g \cdot mL^{-1}$ 的贮备液 ,于冰箱中冷藏。 先将 RIP 和 9 – OH – RIP 混合贮备液 (21.12 $\times 20.80 \ \mu g \cdot mL^{-1}$) 依次用乙腈 – 水(1:1) 稀释成含利培酮和 9 – 羟基利培酮分别为 1.056×10^3 和 1.040×10^3 (H_0)、528 和 520 (H_1)、264 和 260 (H_2)、132 和 130 (H_3)、66 和 65 (H_4)、33 和 32.5 (H_5)、16.5 和 16.25 (H_6) $ng \cdot mL^{-1}$ 的混合对照品溶液; 再加入内标和空白血浆,得到含 RIP 和 9 – OH – RIP 42.24 和 41.60×21.12 和 20.80×10.56 和 10.40×5.28 和 5.20×2.64 和 2.60×1.32 和 1.30×0.66 和 0.65 $ng \cdot mL^{-1}$ 的对照品血浆溶液。 取 $H_1 \times H_3 \times H_5$ 作为高、中、低质控样品, H_6 作为最低定量限样品 (LLOQ),于冰箱中冷藏。

- 1.2.3 血浆样品的处理 于干燥离心管中分别加 $20~\mu L$ 内标溶液、 $H_0 \sim H_6$ 混合对照品溶液 ,用 N_2 吹干 ,加 0.5~m L 空白血浆 ,涡旋 0.5~m in ,再加 3.5~m L 甲基叔丁基醚 ,涡旋 3~m in ,于 $3 \times 10^3~r$ m in $^{-1}$ 离心 10~m in ,和 $200~\mu L$ 乙腈 水(1:1) ,涡旋 2~m in ,于 1.2~x $10^4~r$ m in $^{-1}$ 离心 10~m in ,和 10~m in
- 1.2.4 方法学验证 取 $H_1 \times H_3 \times H_6$ 血浆溶液质 控样本 按 "1.2.3"项方法处理后,以 LC MS/MS 检测 RIP 和 9 OH RIP 的浓度。RIP、9 OH RIP 和内标的保留时间分别为 1.44、1.22、1.54 min 峰形良好,分析时间仅 3 min。ESI + 模式下 利培酮的分子离子 m/z 411.42 产生的碎片离子中,以 m/z 191.19 最强; 9 OH RIP 的分子离子 m/z 427.45 产生的碎片离子中,以 m/z 207.18 最强; 内

标分子离子 m/z 386. 432 产生的碎片离子中,以m/z 122. 27 最强,因此,选择 MRM 监测离子对为 RIP m/z 411. 42 \rightarrow 191. 19、9 - OH - RIP m/z 427. 45 \rightarrow 207. 18、内标 m/z 386. 43 \rightarrow 122. 27 进行测定。空白血浆样品经"1. 2. 3"项方法处理后,无明显干扰;6份来自不同受试者的空白血浆基质经预处理后,以流动相样品重建后进样,获得的峰面积 A 与相同等浓度的流动相样品的峰面积 B 比较,该比值以百分数表示(MF),作为基质效应考察的指标。所有样品的 MF 为 85% ~115% 表明该法处理人血浆基质对两组份的测定均无影响(图1)。

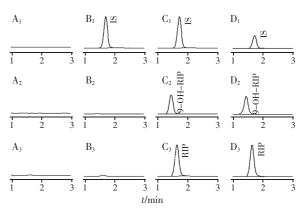


图 1 空白血浆(A)、空白血浆 + 内标(B)、空白血浆 + 内标 + RIP + 9 - OH - RIP(C)、血浆样品(D)溶液的 LC - MS 图

Fig 1 LC – MS chromatograms of blank plasma solution (A), blank plasma + IS solution (B), blank plasma + IS + RIP + 9 – OH – RIP solution (C) and sample plasma solution (D) (1. m/z 386. 43 \rightarrow 122. 27; 2. m/z 427. 45 \rightarrow 207. 18; 3. m/z 411. 42 \rightarrow 191. 19)

- 1.2.5 标准曲线及定量下限 以盐酸丁螺环酮为内标,目标组分的峰面积与内标峰面积的比值对相应的质量浓度($ng \cdot mL^{-1}$)做标准曲线。结果表明:RIP和9-OH-RIP血浆浓度的回归方程分别为: $Y_{RIP}=0.194X-0.010(r=0.997);Y_{9-OH-RIP}=0.088X-0.010(r=0.997)$ 线性范围分别为0.66~42.24、0.65~41.60 $ng \cdot mL^{-1}$ 。以标准曲线的最低点浓度作为最低定量限,且要求该浓度与理论值的偏差在±20%范围内。计算得 RIP、9-OH-RIP 的最低定量限为 0.66、0.65 $ng \cdot mL^{-1}$ 。
- 1.2.6 提取回收率及准确度 对血浆样品中 RIP 和 9 OH RIP 高、中、低及最低定量限质控样品进样分析后,目标组分的峰面积与流动相样品进样分析后目标组分的比较,RIP 和 9 OH RIP 的平均提取回收率为 88.1%、70.1%; 平均方法回收率分别为 101.0%、102.5%(表1)。
- 1.2.7 重复性及精密度试验 对血浆样品中待测成分的高、中、低及最低定量限质控样品处理后 重复进

样 6 次 计算得 $RSD \le 4.9\%$; 方法的日内精密度分别为: 利培酮的 $RSD \le 5.40\%$ 、9 – 羟基利培酮的 $RSD \le 6.19\%$; 日间精密度分别为: 利培酮的 $RSD \le 7.03\%$ 、9 – 羟基利培酮的 $RSD \le 11.04\%$ (表 2)。

表1 血浆中利培酮和9-羟基利培酮的回收率(n=5)

Table 1 Recovery of Risperidone and 9 – hydroxyrisperidone in the plasma (n = 5)

Components	<i>C</i> /	方法回收率		提取回收率	
	μg•L ⁻¹	回收率/%	RSD/%	回收率/%	RSD/%
RIP	1.32	88.95	7.23	96.41	7.53
9 – OH – RIP	5.28	105.35	4.38	87.20	3.27
	21.12	108.58	3.74	80.55	8.30
	1.30	97.41	12.76	78.84	4.19
	5.20	103.31	6.10	67.47	6.26
	20.80	106.87	2.41	64.12	7.25

表 2 利培酮与 9 - 羟基利培酮的日内、日间精密度与回收率

Table 2 Recovery inter – day precision and intra – day precision of RIP and 9 – OH – RIP in the plasma

Components	<i>C</i> /	日内(n=5)		日间(n=15)	
	μg•L ⁻¹	回收率/%	RSD/%	回收率/%	RSD/%
RIP	1.32	92.9	1.86	96.7	7.03
	5.28	106.3	4.24	103.0	5.62
9 – OH – RIP	21.12	104.8	5.40	102.5	4.55
	1.30	4.49	87.7	98.3	11.04
	5.20	101.1	4.55	103.3	4.30
	20.80	104.5	6.19	103.0	5.52

1.2.8 样品的稳定性及系统的稳定性 将血浆样 品中高、中、低浓度的待测成分分为 5 组。第 1 组为 新鲜配制组 立即按"1.2.3"项方法操作; 第2组为 短期室温稳定性组,将配制好的血样于室温放置 10 h后按"1.2.3"项方法操作; 第3组为反复冻融 组 将在-20 ℃条件下冷冻的血样取出,于室温复 融后再行冷冻,反复3次后处理测定;第4组为 -20 ℃冷冻储存组,将配制好的血样放置在 -20 °C 冰柜中冰冻 20 d 后处理测定; 第 5 组为样品 处理、复溶后,于室温放置 10 h 后进样。其 RSD 均 小于11.75% 表明血浆样品稳定性良好,可满足生 物样品的分析。将贮备液分别放置 0、4、7、20 d 后, 分别稀释成含相当于血浆中 21.12 ng•mL-1 RIP 和 20.80 ng·mL⁻¹9 - OH - RIP 的溶液,进样测定,根 据测定成分与内标峰面积及比值变化情况评价贮备 液的稳定性 ,RIP 和 9 - OH - RIP 的面积和比值的 RSD 均小于 4.28% 说明贮备液稳定性较好。

1.2.9 样品的采集与测定 10 名健康男性受试者单剂量口服利培酮分散片(每片 1 mg) ,分别于服药前(0 h) 和服药后 $0.25 \times 0.5 \times 0.75 \times 1 \times 1.5 \times 2 \times 3 \times 5 \times 8$ $11 \times 14 \times 24 \times 48 \times 72 \times 96$ h,由静脉采 5 mL 血,肝素钠抗凝,于 3.5×10^3 r•min $^{-1}$ 离心 10 min,分离血浆,分离

后的血浆样品置已标记好的试管中,于-80 °C 冰箱中保存。RIP 分散片的主要药动学参数分别为: RIP的 $t_{1/2}=3.588\pm1.686$ h, $C_{\max}=14.034\pm6.544$ ng ° mL $^{-1}$, $T_{\max}=1.361\pm0.713$ h, $AUC_{0-1}=66.017\pm46.785$ ng °h °mL $^{-1}$; 9 — OH — RIP的 $t_{1/2}=17.916\pm4.012$ h, $C_{\max}=8.529\pm3.632$ ng °mL $^{-1}$, $T_{\max}=4.542\pm4.192$ h, $AUC_{0-1}=196.901\pm61.787$ ng °h °mL $^{-1}$ 。 平均药 — 时曲线见图 2。

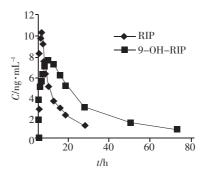


图 2 单剂量口服利培酮分散片后利培酮和 9 - 羟基利培酮的平均 药 - 时曲线 (n=10)

Fig 2 The mean plasma concentration – time curve of RIP and 9 – OH – RIP after a single oral administration of Risperidone dispersible tablets (n = 10)

2 讨论

曾考察乙醚、乙酸乙酯、乙腈、甲醇和甲基叔丁基醚提取溶剂。结果表明: 甲基叔丁基醚作为提取溶剂,待测成分与内源性物质得到了充分的分离,提取回收率较高,方法精密度、重复性和稳定性均较好,适合大批量血浆样品的检测。利培酮和9-羟基利培酮含有碱性氨基基团,在流动相中加入适量甲酸,可提高离子化效率、增加响应、优化峰形。在待测成分被色谱分离完全洗脱下来后,用梯度洗脱,进一步清除了色谱柱上的残留物,同时减小了残留基质对液质联用系统的污染,缩短了分析时间。

参考文献:

- [1] Heykants J ,Huangm L ,Mannens G ,et al. The pharmacokinetics of risperidone in humans: a summary [J]. J Clin Psy – chiatry , 1994 55(5):13 – 18.
- [2] 化学药物制剂人体生物利用度和生物等效性研究技术指导原则[S]. 北京: 国家食品药品监督管理局,2005:2-10.
- [3] 中华人民共和国国家药典委员会. 中国药典[S]. 二部. 北京: 中国医药科技出版社 2010: 附录 X IX B.
- [4] Meulder MD ,Remmerie BMM ,Vries RD ,et al. Validated LC MS/MS methodS for the determination of risperidone and the enantiomers of 9 hydroxyrisperidone in human plasma and urine
 [J]. J Chromatography B ,2008 870: 8 16.

收稿日期:2010-11-15