

浙江福立分析仪器有限公司培训中心 FUL ZheJiang FuLi Analytical Instrumentation Co.Ltd Training Center

## AAS 工作站使用流程

**宁宇亮编**(东北大区)



首先打开仪器 AAS 工作站

1、点击 (建立连接),将仪器和软件连接

2、仪器连接好之后,点击"文件",新建方法,如下图,可按需求输 入栏目中选项



| 📓 原子吸收分光光   | 度计计算机软件       | 2.33 - [任务     | 定义]  |      |         |   |            |
|-------------|---------------|----------------|------|------|---------|---|------------|
| 💹 文件 🕑 工具 🗉 | ) 分析(20) 窗口(3 | 1) 帮助(H)       |      |      |         |   | _ @ ×      |
| <b>S</b>    | 🗾 任务信息        | <b>月月</b> 样品录入 | 元素选择 | 分析选择 | 前子 分析方法 |   | 0 *        |
| Zero<br>Gol | 分析任务编号:       | [              |      |      |         |   |            |
|             | 分析任务名称:       |                |      |      |         |   |            |
|             |               |                |      |      |         |   |            |
| Decide and  | 客户:           | J              |      |      |         |   |            |
|             | 承检方:          |                |      |      |         |   |            |
| は日          | 分析员:          |                |      |      |         |   |            |
|             | 分析日期:         | 2010- 7- 7     | •    |      |         |   | REF 0.0000 |
|             |               |                |      |      |         |   | 0.0000     |
|             |               |                |      |      |         |   | ABS 0.0000 |
|             |               |                |      |      |         |   | × × ∧      |
|             |               |                |      |      |         |   | Fuel Aux   |
|             |               |                |      |      |         |   | A 🛱 🖫      |
|             |               |                |      |      |         |   |            |
|             |               |                |      |      |         |   |            |
|             |               |                |      |      |         |   |            |
|             |               |                |      |      |         |   | ▶ 模拟信号     |
|             |               |                |      |      |         |   |            |
|             |               |                |      |      |         |   |            |
|             |               |                |      |      |         |   |            |
|             | <             |                |      |      |         | > |            |
|             |               |                |      |      |         |   |            |
|             |               |                |      |      |         |   |            |

3、点 带着动人,如下图



| ■ 原子吸h     | <u>女分光光度计计算机软件</u> | 2.33 - [任务定义] |    |        |      |      |                 |            |
|------------|--------------------|---------------|----|--------|------|------|-----------------|------------|
| THE        | →具(T) 分析(M) 窗口(M)  |               |    | - 分析方法 |      | 1 0  |                 | _ <u> </u> |
|            |                    |               |    |        |      | undo | 1               | 0%         |
| Th         | 件品编号               | 件品名称          | 形态 | 取件重    | 定谷体积 | 换算因子 | 样品批号:           |            |
|            |                    |               |    |        |      |      | 固体含量单位: mg/kg ▼ | 1          |
| Zero<br>Go |                    |               |    |        |      |      | 样品录入            |            |
|            |                    |               |    |        |      |      | 样品编码:           |            |
|            |                    |               |    |        |      |      | 样品名称:           |            |
|            |                    |               |    |        |      |      | 样品形态: 液态 ▼      |            |
|            |                    |               |    |        |      |      | 取祥量:            | 0.0000     |
| <b>X</b>   |                    |               |    |        |      |      | 定容体积: ml        | REP 0.0000 |
| Read       |                    |               |    |        |      |      | 换算因子:           | ABS 0.0000 |
|            |                    |               |    |        |      |      | 🗋 新増 📉 删除       | × ×        |
| は          |                    |               |    |        |      |      | □ 批量样品          |            |
|            |                    |               |    |        |      |      | (小于1000个)       | r 🖉 🛣      |
|            |                    |               |    |        |      |      | J               |            |
| He         |                    |               |    |        |      |      |                 |            |
|            |                    |               |    |        |      |      |                 |            |
|            |                    |               |    |        |      |      |                 | □ 模拟信号     |
|            |                    |               |    |        |      |      |                 |            |
|            |                    |               |    |        |      |      |                 |            |

在右侧的样品信息栏中如实输入样品信息,点击"新增"即新增了一

个样品。

4、点 元素选择,如下图



如我们选择做 Cu 元素,则在周期表中点击 Cu 按键,右侧的表格中显示的是做元素的顺序,和调节的灯号位。



查看测试样品元素是否正确,分为 • 按元素查看 , • C 按样品查看

上图就是按元素查看

6、点 📆 分析方法,如下图

| 🔡 文件 🖲      | ) 工具① 分析@ | A) 窗口(Y) 帮助    | (H)    |              |                  |         |                 |   |      | - 8 >      |
|-------------|-----------|----------------|--------|--------------|------------------|---------|-----------------|---|------|------------|
| <b>7</b>    | 🛃 任务信息    | <b>月月</b> 样品录入 | 元素选择   | <b>经</b> 分析: | 站择 🎹 分析方         | it 🔶 📑  | undo            |   |      |            |
|             | 元素(双击选择)  | 📝 方法信息         | 🚬 仪器条件 | 分析系          | \$# <b>*</b> 升温条 | 件 💽 质量控 | 制 Copy <b>》</b> | 1 |      | 0 %        |
| <u>گڑھ</u>  |           |                |        |              |                  |         |                 |   | <br> |            |
| Zero<br>Gol |           |                |        |              |                  |         |                 |   |      |            |
| Ge          |           | 分析方式:          | 火焰原子吸收 | ▼ 信号         | 类型: 时间平:         | b值 ▼    |                 |   |      |            |
| 1932        |           | 扣背景模式:         | 无扣背景模式 | ▼ 灯号         | 1                | 7       |                 |   |      |            |
|             |           | 氘灯电流(mA);      |        | 0<br>自吸灯     | 电流倍数:            | 1       |                 |   |      |            |
| 2           |           |                |        |              |                  |         |                 |   |      | REF 0.0000 |
| Read        |           |                |        |              |                  |         |                 |   |      | ABS 0.0000 |
|             |           |                |        |              |                  |         |                 |   |      | 0x0 0x0 🔿  |
| iŻ.         |           |                |        |              |                  |         |                 |   |      |            |
| Π           |           |                |        |              |                  |         |                 |   |      | A 🖉 😨      |
|             |           |                |        |              |                  |         |                 |   |      |            |
| B           |           |                |        |              |                  |         |                 |   |      |            |
|             |           |                |        |              |                  |         |                 |   |      | □ 模拟信号     |
|             |           |                |        |              |                  |         |                 |   |      |            |



波长一般在前面元素选择界面设置好元素后,波长为该元素默认值 阻尼常数默认 1S 狭缝一般选择 0.2

信号平滑系数默认0



浓度单位: 指标样浓度单位

测量次数:请如实填写,一般设置为3次

读数延时: 根据不同元素设置

读数时间:一般设置 2S,如有要求自行更改

工作曲线,有一次方程和二次方程选择,一般选择一次方程即可强制过零、标准空白校正、样品空白校正,如要选择可在空白方块中打钩。



| 标准 | 浓度   |
|----|------|
| 1  | 1.00 |
|    |      |
|    |      |
|    |      |
|    |      |
|    |      |
|    |      |
|    |      |
|    |      |
|    |      |
|    | ★ 删除 |

表中填写标样实际浓度

9、点 升温条件,进入如下界面

|          | 任务信息            |                                            |
|----------|-----------------|--------------------------------------------|
| <u> </u> | 元素 (双击选择)<br>Cu | 📝 方法信息 🚬 仪器条件 🧾 分析条件 🏹 升温条件 💽 质量控制 Copy> 🏹 |
| Zero     |                 | 火焰类型: 空气-乙炔火焰 💌 燃烧头高度: 7 mm                |
| ₽₩₩      |                 | - <b>登气-乙炔火焰</b><br>空气流星: 15.0 ▼ L/sin     |
|          |                 | 乙炔流量: [2.0 ▼ L/min                         |
|          |                 | <b>笑气-乙炔火焰</b><br>笑气流量: 15.0 ▼ 1/#in       |
| Ŋ        |                 | 乙炔流量; <b>5.0</b> L/min                     |
| Read     |                 | · 宿宴空气-乙炔火焰                                |
| iŻ       |                 | 空气动雄; 5.0 ▼ 1/ein<br>氧气流是: 1.0 ▼ mL/ein    |
| П        |                 | 乙炔流程; 1.0 💌 L/min                          |
|          |                 |                                            |

燃烧头高度默认为 7mm, 乙炔气流量设置为 1.7-2.0L/min





| 另存为                                          |                                                                                                                                                                                                                 |          |   |          | ? 🗙    |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|----------|--------|
| 保存在 (L):                                     | @ 桌面                                                                                                                                                                                                            |          | • | + 🖿 💣 🎟- |        |
| Recent<br>Recent<br>桌面<br>我的文档<br>爱的电脑<br>餐子 | <ul> <li>→ 我的文档</li> <li>→ 我的电脑</li> <li>→ 网上邻居</li> <li>→ MA1700</li> <li>→ FL9500工作站</li> <li>→ H2000</li> <li>→ 中老师课件</li> <li>→ 14色谱仪说</li> <li>□ 22. aas</li> <li>□ 111. aas</li> <li>□ 考试. aas</li> </ul> | 明书       |   |          |        |
|                                              | 文件名(20):                                                                                                                                                                                                        |          |   | •        | 保存 (S) |
|                                              | 保存类型( <u>T</u> ):                                                                                                                                                                                               | AAS File |   | •        | 取消     |

选择要保存的文件夹后,点击保存。

11、保存后进入如下界面





| 仪器控制与系统设置                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------|
| こ 「「「「「「「「」」」「「「」」」「「「」」」「「「」」」「「「」」」」「「」」」「「」」」「「」」」「「」」」」                                                       |
| □ 发射模式 狭缝: 0.4 ▼ PMT负高压: 300 V 设置 自动增益                                                                            |
| 火焰/石墨炉:火焰 ▼ 灯位精调:上 AA 63 %                                                                                        |
| 灯位置: 1 <u> </u>                                                                                                   |
|                                                                                                                   |
| 主电流:3     mA     波长:324.7     nm     设置     波长精调:                                                                 |
| 辅助电流: 0 mA 设置 复位 光路优化 短 长                                                                                         |
|                                                                                                                   |
| 扣背景模式切换 氘灯扣背景 ▼                                                                                                   |
| 自吸灯电流倍数 0 灯号:9 文 设置 自吸收能量平衡                                                                                       |
| 氘灯电流 0 mA                                                                                                         |
|                                                                                                                   |
| 分析光源 这里可选择光源灯位。                                                                                                   |
| 火焰/石墨炉: 火焰 ▼ ()                                                                                                   |
| 选择好原子化器和灯号后,点击 <sup>*路忧化</sup> ,优                                                                                 |
| 灯位精调: 上 波长精调:                                                                                                     |
| <u>左 <u></u> </u> |
| AA 62 %                                                                                                           |
| BG 15 % ,然后点击 自动增益 ,让 AA 值达到 100%。                                                                                |
| 继续分析                                                                                                              |

13、点击\_\_\_\_\_,进入如下图界面

| Ð    | 浙江福立分析仪器有                                | 限公     | 司培训中心           |
|------|------------------------------------------|--------|-----------------|
| FULI | ZheJiang FuLi Analytical Instrumentation | Co.Ltd | Training Center |

| 火焰类型: 空气-乙炔火焰 ▼             | 点燃火焰/设置流量 |       |      |
|-----------------------------|-----------|-------|------|
| 空气-乙炔火焰<br>空气流量: 15.0 L/min | 熄灭火焰      | 雾化器调整 |      |
| 乙炔流量: 2.0 ▼ L/min           | 查询状态      | 调整完成  |      |
| 笑气-乙炔火焰                     |           |       |      |
| 笑气流量: 15.0 L/min            |           |       |      |
| 乙炔流量: 5.0 🗾 L/min           |           |       |      |
| 富氧空气-乙炔火焰                   |           |       |      |
| 空气流量: 5.0 🔽 L/min           |           |       |      |
| 氧气流量: 2.0 💽 mL/min          |           |       |      |
| 乙炔流量: 2.0 💽 L/min           |           |       |      |
|                             | ,         |       |      |
|                             |           |       | 1 关闭 |

在前面的选项中我们已经设置好了乙炔流量,如未设置好,请重新设



氘灯约热15min即可,如预热过久直接跳过。

15、预热后,又跳回13的界面,单击,进入分析界面,进入分析界面



## ) 分析结束后, 如下图



17、任务数据 , 查看数据



| ■ 原子吸<br>■ 文件 @ | - <mark>收分光光度计计算</mark> -<br>) 工具 ① 分析 ⑪) | 机软件 2.33 - [任务数据<br>窗口 (t) 帮助 (t) | ]             |            |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | - @ ×      |
|-----------------|-------------------------------------------|-----------------------------------|---------------|------------|------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| <b>7</b>        | 任务文件: C:\Docu                             | uments and Settings\Administs     | ator\桌面\00100 | . 885      |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 暂停         |
|                 | 任务编号:                                     | 任务名称:「                            |               |            |            | 分析员:「          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 100 %      |
|                 | 分析日期:                                     | 计算时间:                             |               |            |            | ]              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | Cu 🗉 🖾     |
| Zero            | 数据表: 包有汇                                  | ▶ 类别: 相                           | 病准样品 ▼        | 元素: 🖸      | u <u>-</u> | ·              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 00001      |
|                 | 分析光源: 火焰原                                 | 子吸收  信号背景校正:第                     | 灯扣背景          | 是否扣背景: 見   | ł <u>·</u> | 信号类型:          | 时间平均值 💌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 001        |
| (21)            |                                           |                                   |               | ℃ 数据交换     | 副新         | ■ 重新计算         | 我表     【     累 長出     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日      日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日     日 | ±        | 当前分析次数:3   |
|                 | 编号<br>Cn STD1                             | 名称<br>(n. 枝連)                     | ABS 0.0794    | REF 0,0000 | SD 0.0029  | RSD (%)        | Conc (ng/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>^</u> |            |
| . <u> </u>      | Cu_STD2                                   | Cu_标准2                            | 0.1878        | 0.0000     | 0.0007     | 0.4            | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |
| CONTRACTOR OF   | Cu_STD3                                   | Cu_标准3                            | 0.3325        | 0.0000     | 0.0026     | 0.8            | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 0.000      |
| 1 Y             |                                           |                                   |               |            |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | REF 0.0000 |
|                 |                                           |                                   |               |            |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | ABS 0.0785 |
| Read            |                                           |                                   |               |            |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |
| 2+.             |                                           |                                   |               |            |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | Full Aux A |
|                 | 注:表中ABS已做自                                | 助空白枝正                             |               |            |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u> | स्त्र 🎇 💯  |
|                 | ⇔.                                        | 信号图                               | ŧ             |            | . E        | 3              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 工作曲线     |            |
| W               |                                           |                                   |               |            |            | 0.35           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |
|                 | s                                         |                                   |               |            | 70         | 0.25           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |
|                 | AB                                        |                                   |               |            | #          | Q 0.20<br>0.15 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | ▶ 模拟信号     |
|                 |                                           |                                   |               |            |            | 0.10           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |
| 1000            |                                           |                                   |               |            |            | 0.05           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |
|                 |                                           |                                   |               |            |            | 0              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 3      |            |

18、如要查看和打印结果,点击



|       |     |        | <u></u> |        |         |            | х 4ш      |
|-------|-----|--------|---------|--------|---------|------------|-----------|
| 编号    | 名称  | ABS    | REF     | SD     | RSD (%) | Conc(mg/L) | 分析结果      |
| 00001 | 001 | 0.0813 | 0.0000  | 0.0034 | 4.2     | 1.06       | 1.06 mg/L |
|       |     |        |         |        |         |            |           |
|       |     |        |         |        |         |            |           |
|       |     |        |         |        |         |            |           |
|       |     |        |         |        |         |            |           |
|       |     |        |         |        |         |            |           |
|       |     |        |         |        |         |            |           |
|       |     |        |         |        |         |            |           |
|       |     |        |         |        |         |            |           |
|       |     |        |         |        |         |            |           |
|       |     |        |         |        |         | I          |           |

或者点击<mark>凰<sup>报表</sup></mark>



## 浙江福立分析仪器有限公司培训中心

ZheJiang FuLi Analytical Instrumentation Co.Ltd Training Center

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |          |            | 报歌兵          |              |             |           |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------|------------|--------------|--------------|-------------|-----------|--|
| 分析日 <b>期。</b><br>分析任终编号。<br>分析任终忽称。<br>家户。<br>分析员。<br>单松力。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200.0-7-7<br>200.00707<br>911                                           |          | 数据处        | <b>建时间</b> 。 | 2010-7-7 11: | 00 : 36     |           |  |
| 分析条件                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         |          |            |              |              |             |           |  |
| 只要,<br>分析方式,<br>信号设备,<br>打号,<br>打号,<br>实现(4),<br>贪玩压(7),<br>除地,<br>然气,<br>成式(4),<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>这一次,<br>一,<br>一,<br>一,<br>一,<br>一,<br>一,<br>一,<br>一,<br>一,<br>一 | Cu<br>火焼原子 取物<br>时间干粉模<br>1<br>3<br>300<br>0.4<br>空气-乙焼火<br>2.0<br>15.0 | s        |            |              |              |             |           |  |
| 样品表<br>様素振马                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                                                       |          |            |              |              |             |           |  |
| 样品组号<br>00001<br>每个元素数据表                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -<br>祥品名称<br>001                                                        | 形心<br>液心 | 取样线<br>1=1 | き 定度位<br>1   | \$78         |             |           |  |
| 元奈。 Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 测量时间。 2010-7-1                                                          | 11:59:10 |            | 标准浓度         | 单位 雪儿        |             |           |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 作曲红                                                                     |          |            |              |              |             |           |  |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         | 首级力制     |            | Y = 0. 1265  | 1-0.0532     |             |           |  |
| 8 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                       | 线性相关     | 虚果数.       | 0.9966       |              |             |           |  |
| ·#<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         | 报合课题     | <b>8</b> . | 0.0149       |              |             |           |  |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conc.                                                                   |          |            |              |              |             |           |  |
| 样品编号                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 样品名称                                                                    | A55      | 127        | SD           | FSD(%)       | Cane(mg/L ) | 分析结果      |  |
| Cu_STD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 64_标准1                                                                  | 0.0794   | 0.0000     | 0.0029       | 3.6          | 1.00        |           |  |
| Ga_STD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cu_标准2                                                                  | 0.1878   | 0.0000     | 0.0007       | 0.4          | 2.00        |           |  |
| Cu_STD3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cu_19:28.5                                                              | 0.3325   | 0.0000     | 0.0026       | 0.8          | 3.00        |           |  |
| 00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 001<br>                                                                 | 0.0813   | 0.0000     | 0.0034       | 4.2          | 1.06        | 1.06 mg/L |  |
| *医局壁 會样品时報                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 《信件品题 扬和样品数扬》                                                           | = 依望合校:  |            |              |              |             |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |          |            |              |              |             |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |          |            |              |              |             |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |          |            | 1            |              |             |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |          |            |              |              |             |           |  |

## 报表中也可以显示结果:

| 样品编号                      | 样品名称   | ABS    | REF    | SD     | RSD(%) | Conc(mg/L) | 分析结果      |
|---------------------------|--------|--------|--------|--------|--------|------------|-----------|
| Cu_STD1                   | Cu_标准1 | 0.0794 | 0.0000 | 0.0029 | 3.6    | 1.00       |           |
| Cu_STD2                   | Cu_标准2 | 0.1878 | 0.0000 | 0.0007 | 0.4    | 2.00       |           |
| Cu_STD3                   | Cu_标准3 | 0.3325 | 0.0000 | 0.0026 | 0.8    | 3.00       |           |
| 00001                     | 001    | 0.0813 | 0.0000 | 0.0034 | 4.2    | 1.06       | 1.06 mg/L |
| *伸田容白祥见时好准祥见新提和祥见新提可做容白扬志 |        |        |        |        |        |            |           |

\*使用空白样品时标准样品数据和样品数据已做空白校正