夏季广州城区细颗粒物 PM_{2.5} 和 PM_{1.0} 中水溶性无机 离子特征

陶俊¹ 张仁健² ,董林¹ ,张涛¹ ,朱李华¹ ,韩静磊¹ ,许振成¹

(1.环境保护部华南环境科学研究所,广州 510655; 2.中国科学院大气物理研究所,北京 100029)

摘要:于 2008 年 7 月 1 ~ 31 日在广州城区每天采集 $PM_{2.5}$ 和 $PM_{1.0}$ 样品.利用离子色谱分析了样品中 $Na^* \ NH_4^* \ K^* \ Mg^{2*} \ Ca^{2*} \ F^- \ Cl^- \ NO_3^- \ n \ SO_4^{2^-} \ 9 \ Pa \ Bar A \ B$

关键词:细颗粒物;水溶性无机离子;气体污染物;散射系数;能见度 中图分类号:X513 文献标识码:A 文章编号:0250-3301(2010)07-1417-08

Characterization of Water-soluble Inorganic Ions in $PM_{2.5}$ and $PM_{1.0}$ in Summer in Guangzhou

TAO Jun¹, ZHANG Ren-jian², DONG Lin¹, ZHANG Tao¹, ZHU Li-hua¹, Han Jing-lei¹, XU Zhen-cheng¹

(1. South China Institute of Environmental Sciences, MEP, Guangzhou 510655, China; 2. Institute of Atmosphere Physics, Chinese Academy of Sciences, Beijing 100029, China)

Abstract: $PM_{2.5}$ and $PM_{1.0}$ samples were collected simultaneously during July of 2008 in Guangzhou. The concentrations of watersoluble inorganic ions (Na⁺, NH₄⁺, K⁺, Mg²⁺, Ca²⁺, F⁻, Cl⁻, NO₃⁻, and SO₄²⁻) were determined by ion chromatography. Meteorological parameters , atmospheric scattering , visibility , and concentrations of trace gases (SO₂, NO₂, and O₃) for this period were also recorded. The results showed the total water-soluble inorganic ions concentrations were (25.5 ± 10.9) μ g • m⁻³ and (22.7 ± 10.5) μ g • m⁻³ in PM_{2.5} and PM_{1.0}, which occupied (47.9 ± 4.3)% and (49.3 ± 4.3)% of PM mass respectively. Sulfate was the most abundant ion and contributed (25.8 ± 4.0)% of PM_{2.5} mass and (27.5 ± 4.5)% of PM_{1.0} mass respectively. High temperature and high ozone level favored the formation of sulfate from sulfur dioxide , while the high relative humidity favored the formation of nitrate were observed. Moreover , sulfate , nitrate , and ammonium in PM_{2.5} and PM_{1.0} had great impact on the scattering coefficient and visibility degradation.

Key words: fine particle; water-soluble inorganic ions; gas pollutants; scattering coefficient; visibility

大气气溶胶是悬浮在大气中的固体和液体微粒 共同组成的多相体系.大气气溶胶粒子的直径多在 $10^{-3} \sim 10^2 \mu m$ 之间,把空气动力学等效直径 < 2.5 μm 的颗粒物定义为 PM_{2.5},把空气动力学等效直径 <1.0 μm 的颗粒物定义为 PM_{1.0}.粒径越小,比表面 积越大,在环境空气中停留的时间越长,对人体健康 影响也越大.水溶性无机离子是细颗粒物中非常重 要的化学组成部分,其主要成分如硫酸盐、硝酸盐和 铵盐等亲水性较强的离子主要富集在粒径 < 1.0 μm 的颗粒物中^[1],其吸收水分后能够变大从而增强颗 粒物对大气能见度的影响^[2,3].因此开展细颗粒物 尤其是亚微米级颗粒物中的水溶性组分的观测研究 对于认识城市霾天气问题具有十分重要的意义.

国内外对颗粒物中水溶性无机离子的研究,大

部分是针对水溶性无机离子污染特征及其来源分 析^[4-10],近年来逐渐开始关注气体污染物与水溶性 无机离子的转化机制^[11-12]、不同粒径颗粒物中的水 溶性无机离子浓度分布^[13-16]和水溶性无机离子对 气溶胶光学特性影响等方面研究^[17-20].而对亚微米 颗粒物(PM_{1.0})中水溶性无机离子研究尤其鲜 见^[21].但就 PM_{2.5}和 PM_{1.0}中水溶性无机离子与气 体、大气能见度和大气散射系数之间的关系研究还 鲜见报道.本研究收集了 2008 年 7 月 PM_{2.5}和 PM_{1.0} 样品以及同步的气象因子、大气散射系数、大气能见

收稿日期:2009-09-13;修订日期:2009-12-25

基金项目:国家环境保护公益性行业科研专项(200809143);中国科 学院知识创新工程领域前沿项目(IAP09320)

作者简介:陶俊(1979~),男,博士研究生,高级工程师,主要研究方向为大气环境与大气化学,E-mail:taojun@ scies.org

度、气体污染物浓度数据,目的是分析 PM_{2.5}和 PM_{1.0} 中水溶性无机离子组分污染特征、SO₂ 与硫酸盐和 NO₂ 与硝酸盐之间的转化率,探讨水溶性无机离子 对大气散射系数和能见度影响,以期为政府开展城 市大气霾污染的防治工作提供科学依据.

1 材料与方法

1.1 采样地点

采样地点设广州市天河区华南环境科学研究所 综合大楼 13 楼顶(23°07′N,113°21′E),距离地面约 50 m,采样点周围是集中居住区,2 km 范围内无明 显大气污染源,周围无建筑物遮挡视野比较开阔,观 测数据在一定程度上代表了广州城市区域大气污染 水平.

1.2 样品采集

于 2008 年 7 月 1 ~ 31 日使用 2 台美国 RP2000H型采样器分别安装 $PM_{2.5}$ 和 $PM_{1.0}$ 切割头, 每天采集一个 $PM_{2.5}$ 和 $PM_{1.0}$ 样品,采样时间为当日 10:00 ~ 次日 09:30,采样器流量为 16.7 L•min⁻¹, 使用的滤膜为直径 47 mm 的石英膜(Whatman, England).7月6日 $PM_{1.0}$ 样品为采样空白样品.

1.3 气体浓度和大气散射系数和气象因子数据 采集

利用热电 43i 型氮氧化物分析仪、42i 型二氧化 硫分析仪和 49i 型臭氧分析仪在线观测 NO₂、NO、 SO₂、O₃ 质量浓度.利用 TSI 3563 浊度仪观测 550 nm 大气散射系数.利用芬兰 MAWS 自动气象站同 步观测温度、相对湿度、降雨量等气象因子.利用 PWD22 现时天气现象传感器(红外前向散射原理) 观测大气能见度以及天气现象(晴天、霾、霭、雾、雨 等).

1.4 水溶性无机离子化学分析

剪取四分之一的石英膜加入 10 mL 去离子水 (R > 18.2 MΩ),超声萃取 1 h,采用 0.45 μm 的过 滤器过滤定容,用 Dionex-500 型离子色谱仪对水溶 性无机离子进行分析. Na⁺、NH⁺₄、K⁺、Mg²⁺和 Ca²⁺ 这 5 种阳离子使用 CS12A 分析柱和 CG12A 保护柱 及 CSRS 抑制器进行检测分析,淋洗液使用浓度为 20 mmol・L⁻¹的 MSA,流速为 1 mL・min⁻¹.4 种阴 离子 F⁻、Cl⁻、NO₃⁻和 SO²⁻₄ 使用 AS11-HC 分析柱 和 AG11-HC 保护柱及 ASRS 抑制器进行检测分析, 淋洗液是 20 mmol・L⁻¹的 KOH,流速为 1 mL・min⁻¹.数据质量控制采用美国沙漠所(DRI) 质量控制标准,每测定 10 个样品复检 1 个,样品质 量浓度在 0.030 ~ 0.100 g • L⁻¹范围时,允许的标准 偏差为 ± 30 %;质量浓度在 0.100 ~ 0.150 g • L⁻¹ 之间时,要求标准偏差为 < 20%;样品质量浓度 > 0.150 g • L⁻¹时,允许的标准偏差为 10%.

经检测 62 个样品中的 Na⁺、NH₄⁺、K⁺、Mg²⁺、 Ca²⁺、F⁻、Cl⁻、NO₃⁻和 SO₄²⁻这9 种离子中,Mg²⁺和 F⁻浓度很小(<0.2 μ g·m⁻³),因此在本研究中不 作讨论.

2 结果与分析

2.1 PM25和 PM10浓度水平

表1为广州夏季 PM2.5和 PM1.0中水溶性无机离 子质量浓度水平. PM25和 PM10日均值质量浓度分 别为 (53.7 ± 23.2) µg • m⁻³ 和 (46.4 ± 21.3) μg•m⁻³,变化范围分别为28.8~131.9 μg•m⁻³和 19.4 ~115.6 μg • m⁻³. PM_{1.0}占 PM_{2.5}质量浓度的 (84.5±7.6)%,变化范围为62.0%~95.8%.PM, 5 和 PM_{1.0}中水溶性无机离子浓度和分别为(25.5 ± 10.9) μ g • m⁻³和(22.7 ± 10.5) μ g • m⁻³,占 PM_{2.5} 和 PM_{1.0} 质量浓度的(47.9 ± 4.3)%和(49.3 ± 4.3)%. PM₂₅和 PM₁₀中 SO²⁻ 浓度最高分别为 (14.2 ± 7.9) μg • m⁻³ 和 (13.1 ± 7.7) μg • m⁻³. SO_4^{2-} 主要来源于 SO₂与氧化剂的均相和非均相反 应,说明区域内工业燃煤排放二氧化硫对广州城区 细颗粒物中 SO_4^2 的贡献较大. NO_3^- 和 NH_4^+ 浓度相 对较低,主要由于夏季温度较高,颗粒物中的 NO3 $\mathbf{n} \operatorname{NH}_{1}^{+}$ 比较容易挥发. PM, 和 PM, 中 [Cl⁻]/ [Na⁺]摩尔浓度比值分别为(0.23 ± 0.16)和(0.18 ±0.13),均小于1.16,说明海盐在向广州城区输送 过程中发生氯亏损^[22].根据过量氯定义^[23],计算得 到 PM_{2.5} 和 PM_{1.0} 氯 亏 损 比 例 分 别 为 (80.5 ± 13.8)%和(84.5±11.1)%.PM, 氯亏损比例略高 于 PM25 可能是由于较细的粒子表面积相对较大 ,发 生氯亏损反应几率大^[24]. K⁺和 Ca²⁺浓度水平较小, 说明夏季生物质燃烧和道路扬尘类污染物对广州城 区细粒子的贡献很小.

表 2 为广州夏季水溶性无机离子在 $PM_{2.5}$ 和 $PM_{1.0}$ 中所占质量分数. 由表 2 可知 , SO_4^{2-} 占 $PM_{2.5}$ 和 $PM_{1.0}$ 中质量分数比例最高,分别为 (25.8 ± 4.0)%和 (27.5 ± 4.5)%,其次为 NH_4^+ 、 Na^+ 和 NO_3^- .亲水性较强的 SO_4^{2-} 、 NO_3^- 和 NH_4^+ 占 $PM_{2.5}$ 和 $PM_{1.0}$ 中质量分数比例分别为 (35.8 ± 4.3)%和 (37.1 ± 5.0)%,可见亲水性离子是 $PM_{2.5}$ 和 $PM_{1.0}$

表1 广州夏季 PM_{2.5}和 PM_{1.0}中水溶性无机离子浓度水平 /μg・m⁻³

Table 1 Level of water-soluble inorganic ions concentrations in $PM_{2,5}$ and $PM_{1,0}$ in summer in Guangzhou/ $\mu g \cdot m^{-3}$

样品类型	质量浓度	SO_4^2 -	NO ₃ ⁻	Cl -	Na ⁺	NH_{4}^{+}	K *	Ca ² +
PM _{2.5}	53.7 ±23.2	14.2 ± 7.9	2.3 ± 0.9	1.0 ± 0.8	2.7 ± 0.4	3.2 ± 2.4	0.6 ± 0.3	1.6 ± 0.3
PM _{1.0}	46.4 ± 21.3	13.1 ± 7.7	1.8 ± 0.7	0.7 ± 0.5	2.4 ± 0.3	2.9 ± 2.4	0.6 ± 0.3	1.3 ± 0.2

表 2 广州夏季水溶性无机离子在 PM2.5和 PM1.0中所占质量分数 /%

Table 2 Percentages of water-soluble inorganic ions concentrations in PM2.5 and PM1.0 in summer in Guangzhou/%

样品类型	SO ₄ ^{2 -}	NO ₃ ⁻	Cl -	Na ⁺	$\mathrm{NH_4^+}$	K *	Ca ² +
PM _{2.5}	25.8 ± 4.0	4.5 ± 1.7	2.0 ± 1.5	5.6 ± 1.8	5.5 ± 1.6	1.2 ± 0.2	3.3 ± 1.1
PM _{1.0}	27.5 \pm 4.5	5.4 ± 2.0	1.8 ± 1.3	6.0 ± 2.2	5.4 ± 2.0	1.2 ± 0.2	3.3 ± 1.2

中十分重要的组成部分.

表 3 为国内主要城市细颗粒物中水溶性无机离 子浓度水平. 由表 3 可知,夏季北京和西安 PM_{2.5}中 的水溶性无机离子浓度比广州和上海高,其中西安 PM_{2.5}中除 SO²⁻₄ 浓度最高,其次是北京和广州,上海 最低. 广州与上海 PM_{2.5}中除 SO²⁻₄ 外其他水溶性无 机离子浓度水平相当. 夏季北京和西安 PM_{2.5}中 NO₃⁻和 NH₄⁺浓度明显高于广州和上海,其主要原因 是夏季北方城市温度相对较低不利于颗粒物中 NO₃⁻和 NH₄⁺挥发. 西安冬季 PM_{1.0}中水溶性无机离 子浓度明显高于广州夏季 PM_{1.0}中水溶性无机离子 浓度水平. 总体来讲,夏季广州细颗粒物中水溶性无 机离子水平相对较高,低于北京和西安,但高于 上海.

表3 国内主要城市细颗粒物中水溶性无机离子浓度水平/ $\mu extrm{g} \cdot extrm{m}^{-3}$

Table 3 Level of water-soluble inorganic ions concentrations in fine particles in urban cities in China/ μ g \cdot m $^{-3}$

城市	样品类型	时间	季节	SO_4^2 -	NO_3^-	Cl -	Na ⁺	NH_{4}^{+}	K *	Ca ²⁺	文献
广州	PM _{2.5}	2008 年	夏季	14.2	2.3	1.0	2.7	3.2	0.6	1.6	本研究
北京	PM _{2.5}	2001~2003 年	夏季	18.4	11.2	1.4	0.2	10.1	1.3	0.7	[25]
上海	PM _{2.5}	2003~2005年	夏季	5.4	2.6	0.5	0.5	2.4	0.2	1.6	[26]
西安	PM _{2.5}	2006 年	夏季	46.4	13.8	2.0	1.6	12.5	1.7	0.5	[27]
广州	$PM_{1.0}$	2008 年	夏季	13.1	1.8	0.7	2.4	2.9	0.6	1.3	本研究
西安	$PM_{1.0}$	2006 年	冬季	27.2	12.7	7.0	6.0	6.8	1.8	5.2	[21]

图 1 和图 2 分别为夏季 $PM_{2,5}$ 和 $PM_{1,0}$ 中水溶性 阴离子和阳离子日均值浓度变化.由图1和图2可 知,PM,,和PM,,中同种水溶性无机离子变化趋势 基本一致.图3为夏季散射系数、能见度和气体污染 物逐日变化. 由图 3 可知,大气散射系数为(2.3 × 10⁻⁴ ±1.1×10⁻⁴) m⁻¹,变化范围为1.0×10⁻⁴~ 6.0×10⁻⁴ m⁻¹.能见度为(9.9±3.2)km,变化范围 为 4.4 ~ 15.0 km. SO, 日均值浓度为(78.2 ± 40.3) µg·m⁻³,浓度范围为 24.5 ~ 222.7 μg·m⁻³. O₃ 日均值浓度为(41.8 ± 30.6) μg・m⁻³ 浓度范围为 5.8 ~ 126.2 μg・m⁻³. NO 日均值浓度为(31.8±21.3) μg·m⁻³,浓度范围为 5.6~106.6 μg·m⁻³. NO₂ 日均值浓度为(67.9 ± 23.4) µg•m⁻³,浓度范围为 35.7 ~ 148.8 $\mu g \cdot m^{-3}$. 夏季 PM_{2.5}和 PM_{1.0}质量浓度与其中 SO₄²⁻ 和 NH⁺ 变化趋势基本一致 ,尤其 PM_{2.5}和 PM_{1.0}中的 SO_4^2 和 NH₄ 浓度非常接近,说明 SO₄²⁻ 和 NH₄ 变主

要富集在 PM, 。中,这与北京研究结论一致^[1]. 由于 颗粒物中 SO_4^{2-} 浓度较高 NH_4^+ 优先与 SO_4^{2-} 反应生 成粒径较小的铵盐,而 NO_3^- 则与 Na^+ 或 Ca^{2+} 生成 粒径较大的钠盐或钙盐,因此 PM,, 中 NO, 浓度略 高于 PM_{1.0}. 来源于土壤的 Ca²⁺则主要分布于粒径 >1.0 μm 的粒子中. 由此可见 ,PM, 5和 PM, 6中水 溶性无机离子浓度分布有一定的差异.大气散射系 数、 PM_{2} 、和 PM_{10} 质量浓度及其 SO_{4}^{2-} 、 NH_{4}^{+} 和 K^{+} 的 变化趋势基本一致且同步在7月27日达到极值,可 见较高的 PM, 和 PM, 浓度是导致能见度降低的重 要因素之一.图4为夏季气象因子逐日变化.由图4 可知 夏季观测期间温度为(29.3 ± 2.3)℃,变化范 围 25.8~34.5℃.相对湿度为(72.3±11.7)%,变 化范围 42.8%~88.5%.观测期间有 14 d 有比较 明显的降雨,最大日降雨量为18.0 mm,降雨时间大 部分集中在夜间和凌晨. 总体来讲 7月1日~7月 20 日降雨频率较高 ,PM2.5和 PM1.0 及其水溶性无机

Fig. 1 Daily variations of fine particle and anion concentrations in $PM_{2.5}$ and $PM_{1.0}$ in summer , 2008

离子质量浓度基本处于较低水平,大气散射系数较低,能见度较好,7月21日~7月30日主要以晴到 多云天气为主且云层较低不利于污染物扩散,导致 PM_{2.5}和 PM_{1.0}及其水溶性无机离子质量浓度逐渐升 高,大气散射系数逐渐升高,能见度明显下降.

2.2 SO_2 、 NO_2 与硫酸盐和硝酸盐关系

0

为了研究 SO₂ 与硫酸盐和 NO₂ 与硝酸盐之间 转化率,通常用硫的氧化率(sulfur oxidation ratio, SOR)公式(1)和氮的氧化率(nitrogen oxidation ratio,NOR)公式(2)来表示^[28].

SOR =
$$\frac{\frac{[\text{nss-SO}_4^{--}]}{96}}{\frac{[\text{nss-SO}_4^{--}]}{96} + \frac{[\text{SO}_2]}{64}}$$
(1)

NOR =
$$\frac{\frac{[NO_3^-]}{62}}{\frac{[NO_3^-]}{62} + \frac{[NO_2^-]}{46}}$$
 (2)

式中, [nss-SO₄²⁻] = [SO₄²⁻] - 0.2517[Na⁺]^[29].图 5为PM_{2.5}和PM_{1.0}中SOR和NOR日均值变化.由图 5可知 在雨天(rain)、霭和雨天(mist,rain)、霭天气

(mist)、霾和霭天气(haze and mist)、晴天和雨天 (clear and rain)、晴天和霭天气(clear and mist)和晴 天(clear) 天气现象下, PM2.5和 PM1.0中 SOR 分别为 0.07、0.10、0.13、0.25、0.06、0.12、0.11 和 0.07、0.09、0.13、0.23、0.06、0.10、0.10.由此可 知 ,霾和霭天气最有利于 SO_2 向 SO_4^2 转化 ,其次是 霭天气,再次是晴天. $SO_2 \cap SO_4^{2-}$ 转化机制主要分 为2类,即SO2 与 0,和・OH 均相氧化反应和 SO2 与氧化剂在水汽或气溶胶液滴表面的非均相氧化反 应.由此可以推断,霾和霭天气 SO_2 向 SO_4^2 转化机 制主要以非均相氧化反应为主,而晴天主要是均相 氧化反应为主.NO,向 NO,转化机制主要是通过 NO2 光化学反应生成硝酸,硝酸在特定的条件下形 成硝酸盐进入颗粒物.夏季 PM_{10} 中 NOR 较 低且变化不明显,其平均值均为0.02,其主要原因 是夏季温度较高硝酸盐容易挥发生成气态硝酸.

由表 4 和表 5 可知, PM_{2.5}和 PM_{1.0}中 SOR 与 NH₄⁺、温度和 O₃ 呈正相关性,相关性系数分别为 0.51(0.51)、0.57(0.62)和 0.37(0.41),可见较高 的温度、NH₄⁺和 O₃ 有利于 SO₂ 向硫酸盐转化.温度 7期

图 2 2008 年夏季 PM_{2.5}和 PM_{1.0}中水溶性阳离子质量浓度逐日变化

Fig. 2 Daily variations of cation concentrations in PM2.5 and PM1.0 in summer , 2008

图 3 2008 年夏季散射系数、能见度和气体污染物质量浓度逐日变化 Fig. 3 Daily variations of scattering coefficient, visibility and gas pollutants concentrations in summer, 2008

和 O₃ 相关性较好,说明较高的温度和 O₃ 浓度条件 下大气氧化能力较强,有利于 SO₂ 与氧化剂反应生 成 SO₄²⁻. NH₄⁺ 主要来源于 NH₃ 与酸性气体(如 H₂SO₄、HCl和HNO₃等)中和反应,而NH₃优先与 SO₂氧化反应生成的H₂SO₄中和反应生成 (NH₄)₂SO₄,只有NH₃富裕时才会与其他酸性气体

Fig. 4 $\,$ Daily variations of the main meteorological factors in summer , 2008 $\,$

图 5 2008 年 SOR 和 NOR 日均值变化

Fig. 5 Daily variations of SOR and NOR in 2008

表 4	PM _{2.5} 中	SOR	与 NH₄+	、温度	、相对湿度和	03	关系
-----	---------------------	-----	--------	-----	--------	----	----

Table 4	Correlation between	the SOR , N	OR and temperature	, relative humidity	, ozone in PM ₂ ,
rable 4	Conferation between	me son , w	on and temperature	, relative numberly	, ozone m $1 M_2$

$PM_{2.5}(n=31)$	SOR	NOR	NH_4^+	温度	相对湿度	03
SOR	1.00	0.12	0.51 * *	0. 57 * *	-0.42*	0.37*
NOR		1.00	-0.19	-0.38*	0.50 * *	-0.41*
NH_{4}^{+}			1.00	0.75 * *	-0.72 * *	0.85 * *
温度				1.00	-0.97 * *	0.86 * *
相对湿度					1.00	-0.87 * *
03						1.00

* * 表示 α = 0.01 水平上 相关性极显著(双侧检验),* 表示 α = 0.05 水平上 相关性显著(双侧检验),下同

表 5	PM ₁ 。中 SOR	NOR 与 NH ⁺	、温度、相对湿度和 O ₄	关系
-1-1-1-	1.0 1 001			~~~~

Table 5	Correlation	between	the SOR	, NOR	and	temperature	, relative	humidity	, ozone ir	1 PM ₁	. 0
---------	-------------	---------	---------	-------	-----	-------------	------------	----------	------------	-------------------	-----

$PM_{1.0} (n = 30)$	SOR	NOR	NH_4^+	温度	相对湿度	03
SOR	1.00	0.14	0. 51 * *	0.62 * *	-0.46*	0. 41*
NOR		1.00	-0.18	-0.36	0.47 * *	-0.36
NH_{4}^{+}			1.00	0.76 * *	-0.73 * *	0.86 * *
温度				1.00	-0.97 * *	0.85 * *
相对湿度					1.00	-0.87 * *
03						1.00

1423

(如 HCl 和 HNO₃ 等)中和反应^[11],因此较高的 NH₄⁺浓度说明有较高浓度的 SO₄²⁻ 生成. PM_{2.5}和 PM_{1.0}中 NOR 与相对湿度呈正相关性,相关性系数 分别为 0.50 和 0.47,主要是由于较高相对湿度有 利于气态 HNO₃ 溶解气溶胶液滴中形成硝酸盐,这 与北京大学在 2004 年新垦观测结果类似^[11].

2.3 水溶性无机离子对大气散射系数和能见度的 影响

表 6 为 $PM_{2.5}$ 和 $PM_{1.0}$ 中水溶性无机离子与大气 散射系数和能见度的相关性分析. 由表 6 可知, $PM_{2.5}$ 和 $PM_{1.0}$ 中 NH_4^+ 与 SO_4^{2-} 相关性系数最大,均 为 0. 98. $PM_{2.5}$ 和 $PM_{1.0}$ 中 NH_4^+ 与 SO_4^{2-} 摩尔比介于 0. 5 ~ 1. 6 之间,可以推断 NH_4^+ 与 SO_4^{2-} 主要以 NH_4HSO_4 的形式存在. $PM_{2.5}$ 和 $PM_{1.0}$ 质量浓度与散 射系数和能见度的相关性系数分别为 0.96、-0.71 和 0.93、-0.65,可见 $PM_{2.5}$ 和 $PM_{1.0}$ 对散射系数和 能见度的影响非常明显. $PM_{2.5}$ 与大气散射系数和能 见度的相关性系数略高于 $PM_{1.0}$,其主要原因是在湿 度较大的天气下,<1 μ m 的粒子易吸湿长大或碰撞 合并,使得采集的 $PM_{1.0}$ 浓度偏小而 $PM_{2.5}$ 浓度偏大. 能见度与散射系数呈负相关性,相关性系数为 -0.81. $PM_{2.5}$ 和 $PM_{1.0}$ 中亲水性较强的 SO_4^{2-} 、 NH_4^+ 和 NO_3^- 与散射系数呈较好的正相关性,与能见度呈 较好负相关性. SO_4^{2-} 、 NH_4^+ 和 NO_3^- 质量浓度约占水 溶性无机离子浓度 70% 以上,可见 $PM_{2.5}$ 和 $PM_{1.0}$ 中 SO_4^{2-} 、 NH_4^+ 和 NO_3^- 对散射系数和能见度影响较大.

			表6 水洋	容性无机离子	与散射系数和	1能见度的相	关关系			
	Table	6 Correlatio	n between the	e water-soluble	inorganic ions	and the sca	ttering coefficie	nt and visibili	ty	
(n = 31)	PM _{2.5}	Cl -	NO ₃	SO_4^2 -	Na *	NH_4^+	K *	Ca ² +	散射系数	能见度
PM _{2.5}	1.00	-0.07	0.43*	0.97 * *	0.13	0. 97 * *	0. 91 * *	0.28	0.96 * *	-0.71 * *
Cl -		1.00	0.55 * *	-0.23	0.63 * *	-0.21	- 0. 06	0. 50 * *	0.06	-0.41 * *
NO ₃			1.00	0.27	0.44^{*}	0.36*	0.35	0.47 * *	0. 57 * *	-0.75 * *
SO_{4}^{2} -				1.00	0.08	0. 98 * *	0. 90 * *	0.25	0. 91 * *	-0.59**
Na ⁺					1.00	0.01	0.06	0.77 * *	0.20	-0.32
NH_{4}^{+}						1.00	0. 90 * *	0.17	0. 92 * *	-0.64 * *
K *							1.00	0.22	0. 91 * *	-0.67 * *
Ca ² +								1.00	0.34	-0.40*
散射系数									1.00	-0.81 * *
能见度										1.00
(n = 30)	$PM_{1.0}$	Cl -	NO_3^-	SO_4^2 -	Na ⁺	NH_4^{+}	K *	Ca ^{2 +}	散射系数	能见度
PM _{1.0}	1.00	-0.16	0. 53 * *	0.97 * *	0.02	0. 98 * *	0. 90 * *	0.23	0.93 * *	-0.65 * *
Cl -		1.00	0.47 * *	-0.34	0.57**	-0.31	-0.12	0.26	0.02	-0.37*
NO ₃ ⁻			1.00	0.36*	0.34	0.44^{*}	0.45*	0.35	0.67 * *	-0.80 * *
SO_4^{2} -				1.00	-0.04	0. 98 * *	0.87 * *	0.18	0. 88 * *	-0.52 * *
Na ⁺					1.00	-0.10	0.02	0.18	0.14	-0.22
NH_4^+						1.00	0.88 * *	0.20	0. 90 * *	-0.60 * *
K *							1.00	0.18	0. 89 * *	- 0. 66 * *
Ca ^{2 +}								1.00	0.33	-0.27
散射系数									1.00	-0.81 * *
能见度										1.00

3 结论

(1) 广州夏季 $PM_{2.5}$ 和 $PM_{1.0}$ 日均值质量浓度分 别为(53.7 ± 23.2) μ g • m⁻³和(46.4 ± 21.3) μ g • m⁻³ 7种水溶性无机离子浓度占 $PM_{2.5}$ 和 $PM_{1.0}$ 质量浓度的(47.9 ± 4.3)%和(49.3 ± 4.3)%. $SO_4^{2^-}$ 占 $PM_{2.5}$ 和 $PM_{1.0}$ 中质量浓度比例最高,分别为 (25.8 ± 4.0)%和(27.5 ± 4.5)%.

(2) 霾和霭天气最有利于 SO_2 向 SO_4^{2-} 转化 ,其

次是霭天气、再次是晴天. 较高的温度和 O₃ 浓度有 利于 SO₂ 与氧化剂反应生成 SO₄²⁻. 较高的相对湿 度有利于气态 HNO₃ 溶解到气溶胶液滴中形成硝 酸盐.

(3) PM_{2.5}和 PM_{1.0}质量浓度与散射系数和能见度的相关性系数分别为 0.96、-0.71 和 0.93、-0.65.能见度与散射系数呈负相关性 相关性系数为-0.81. PM_{2.5}和 PM_{1.0}中亲水性较强的 SO₄²⁻、NH₄⁺和 NO₃⁻对散射系数和能见度影响较大.

参考文献:

- [1] 徐宏辉,王跃思,温天雪,等.北京大气气溶胶中水溶性离子的粒径分布和垂直分布[J].环境科学2007 28(1):14-19.
- [2] Lee C G , Yuan C S , Chang J C , et al. Effects of aerosol species on atmospheric visibility in Kaohsiung city , Taiwan [J]. J Air Waste Manage , 2005 , 55:1031-1041.
- [3] Dougle P G, Vlasenko A L, Veefkind J P, et al. Humidity dependence of the light scattering by mixtures of ammonium nitrate, ammonium sulfate and soot [J]. J Aerosol Sci, 1996, 27:S513-S514.
- [4] Shen Z X, Arimoto R, Cao J J, et al. Seasonal variations and evidence for the effectiveness of pollution controls on watersoluble inorganic species in total suspended particulates and fine particulate matter from Xi'an, China [J]. J Air Waste Manage, 2009, 58: 1560-1570.
- [5] Shen Z X, Cao J J, Arimoto R, et al. Ionic composition of TSP and PM_{2.5} during dust storms and air pollution episodes at Xi'an, China [J]. Atmos Environ, 2009, 43: 2911-2918.
- [6] Tan J H , Duan J C , He K B , et al. Chemical characteristics of PM_{2.5} during a typical haze episode in Guangzhou [J]. J Environ Sci , 2009 , 21:774-781.
- [7] Lai S C , Zou S C , Cao J J , et al. Characterizing ionic species in PM_{2.5} and PM₁₀ in four Pearl River Delta cities , South China
 [J] J Environ Sci , 2007 , 19(8) : 939-947.
- [8] Wu D , Tie X X , Deng X J. Chemical characterizations of soluble aerosols in southern China [J]. Chemosphere , 2006 ,64:749-757.
- [9] Hagler G S W, Bergin M H, Salmon L G, et al. Source areas and chemical composition of fine particulate matter in the Pearl River Delta region of China [J]. Atmos Environ, 2006, 40: 3802-3815.
- [10] 沈振兴,李丽珍 杜娜,等. 西安市春季大气细粒子的质量浓度及其水溶性组分的特征[J]. 生态环境,2007,16(4):1193-1198.
- [11] Hu M, Wu Z J, Slanina J, et al. Acidic gases, ammonia and water-soluble ions in PM_{2.5} at a coastal site in the Pearl River Delta China [J]. Atmos Environ, 2008, 42:6310-6320.
- [12] 李丽珍 沈振兴 杜娜,等. 霾和正常天气下西安大气颗粒物 中水溶性离子特征[J]. 中国科学院研究生院学报,2007,24 (5):674-679.
- [13] Liu S, Hu M, Slanina S, et al. Size distribution and source analysis of ionic compositions of aerosols in polluted periods at Xinken in Pearl River Delta (PRD) of China [J]. Atmos Environ, 2008, 42: 6284-6295.
- [14] 赵亚南,王跃思,温天雪,等.贡嘎山大气气溶胶中水溶性无 机离子的观测与分析研究[J].环境科学,2009,30(1):9-13.

- [15] 徐宏辉,刘洁,王跃思,等.杭州地区大气气溶胶中水溶性离 子特征的城郊对比分析[J].环境化学,2009,**28**(4):598-599.
- [16] 徐宏辉,王跃思,杨勇杰,等.泰山顶夏季大气气溶胶中水溶 性离子的浓度及其粒径分布研究[J].环境科学,2008,29 (2):305-309.
- [17] TAO J, HO K F, Chen L G, et al. Effect of chemical composition of PM_{2.5} on visibility in Guangzhou, China, 2007 spring [J]. Particuology, 2009, 7(1):68-75.
- [18] Liu X G , Cheng Y F , Zhang Y H , et al. Influences of relative humidity and particle chemical composition on aerosol scattering properties during the 2006 PRD campaign [J]. Atmos Environ , 2008 A2: 1525-1536.
- [19] Cheng Y F, Wiedensohler A, Eichler H, et al. Aerosol optical properties and related chemical apportionment at Xinken in Pearl River Delta of China [J]. Atmos Environ, 2008, 42: 6351– 6372.
- [20] Andreae M O, Schmid O, Yang H, et al. Optical properties and chemical composition of the atmospheric aerosol in urban Guangzhou, China [J]. Atmos Environ, 2008 42:6335-6350.
- [21] 沈振兴,韩月梅,周娟等.西安冬季大气亚微米颗粒物的化学 特征及来源解析[J].西安交通大学学报,2008,42(11): 1418-1423.
- [22] Cheng Z L , Lam K S , Chan L Y , et al. Chemical characteristics of aerosols at coastal station in Hong Kong. I. Seasonal variation of major ions , halogens and mineral dusts between 1995 and 1996 [J]. Atmos Environ , 2000 , 34: 2771-2783.
- [23] 王珉 胡敏. 青岛沿海大气气溶胶中海盐源的贡献 [J]. 环境 科学 2000 21(5):83-85.
- [24] 王珉,胡敏.青岛沿海大气气溶胶中氯亏损的研究[J].环境 科学学报 2000 **20**:40-43.
- [25] Wang Y , Zhuang G S , Tang A H , et al. The ion chemistry and the source of PM_{2.5} aerosol in Beijing [J]. Atmos Environ , 2005 , 39: 3771-3784
- [26] Wang Y , Zhuang G S , Zhang X Y , et al. The ion chemistry , seasonal cycle , and sources of PM_{2.5} and TSP aerosol in Shanghai [J]. Atmos Environ , 2006 , 40: 2935-2952
- [27] 张婷,曹军骥,吴枫,等.西安春夏季气体及PM_{2.5}中水溶性组分的污染特征[J].中国科学院研究生院学报,2007,24(5): 641-647.
- [28] Kaneyasu N, Ohta S, Murao N. Seasonal variation in the chemical composition of atmospheric aerosols and gaseous species in Sapporo, Japan [J]. Atmos Environ, 1995, 29 (13): 1559– 1568.
- [29] Millero F J. Chemical oceanography [M]. Boca Raton: CRC Press, 1996. 469.