Sm³⁺ 掺杂稀土硼酸盐玻璃的光谱参数计算和荧光光谱分析

杨殿来1,林 海1*,侯嫣嫣1,徐龙权1,翟 滨1,班丽霞1 刘贵山',唐乃岭', 王树传',马铁成',王晓君²,刘行仁²

1. 大连轻工业学院化工与材料学院, 辽宁 大连 116034

2. 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130021

摘 要 制备了具有高效可见荧光发射的 Sm³⁺ 掺杂稀土硼酸盐(LBLB) 玻璃, 对玻璃的吸收和荧光光谱展开 了测试与分析。根据 Judd Ofelt 理论对吸收光谱进行了拟合, 求得 Sm^{3+} 离子的晶场调节参数 Ω_{r} = (2, 4, 6) 分 别为 6.81×10⁻²⁰, 4.43×10⁻²⁰和 2.58×10⁻²⁰ cm²,并进一步计算出各能级跃迁的谱线强度、自发辐射跃迁概 率、辐射寿命和荧光分支比等光谱参数。紫外光激发下. Sm³⁺ 掺杂 IBLB 玻璃发出明亮的橙红色光。激发光 谱表明, 氩离子激光器是 Sm³⁺ 掺杂 LBLB 玻璃有效的激发光源。

主题词 Sm³⁺ 离子; 硼酸盐玻璃; 光谱参数; 荧光光谱 中图分类号: 0433.4; TQ171 文献标识码: A 文章编号: 1000 0593(2006) 01 0086 04

引 言

氧化物玻璃于上个世纪首次成功地应用于激光领域,正 在光通讯、上转换激光、发光及非线性光学等领域中受到广 泛的关注[1-4]。其中, 硼酸盐体系玻璃是一类适宜稀土和过渡 族离子掺杂且稳定的基质材料、并且具有合成温度低、易于 制备和加工等优点,具有很高的科研和实用价值^[58]。因此, 稀土硼酸盐玻璃日渐成为人们研究的焦点。作为掺杂的稀土 离子, Er³⁺, Tm³⁺, Pr³⁺, Ho³⁺ 等离子受到了充分的重视与应 用^[911]。Sm³⁺ 也是一种很有研究价值的离子, 它是很有效的 激活剂, 它的激发和发射均属 4f 4f 电偶极跃迁, 紫外光激 发下,有很强的可见荧光,在许多发光材料中起着十分重要 的作用^[12-14]。由于 Sm³⁺ 发射效率高, 并且 Sm³⁺ 的能级相当 丰富,因此利用其设计新型光学功能材料的潜力很大。本文 合成和研究了 Sm³⁺ 掺杂的硼酸盐玻璃, 测定了 Sm³⁺ 在室温 下的吸收光谱, 计算了 Sm^{3+} 离子的晶场调节参数 $\Omega = (2, 1)$ 4, 6) 分别为 6, 81× 10⁻²⁰, 4, 43×10⁻²⁰和 2, 58× 10⁻²⁰ cm², 并 对其发光性质进行了测试与研究。

1 实 验

本实验合成了掺 Sm³⁺ 的稀土硼酸盐玻璃: 8Li₂O7BaO (15-x) La, O₃-70B, O₃: x Sm, O₃。玻璃制备原料中, Sm, O₃为

作者简介:杨殿来, 1982 年生,大连轻工业学院化工与材料学院硕士研究生 * 通讯联系人 ◎ 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

光谱纯、其余药品均为分析纯。按化学计量比称量药品、研 磨混匀后装入陶瓷坩埚中,放入加热到800℃的电阻丝炉, 烘干 30 min, 再放入已预热到 1 200 ℃的高温炉中, 熔融 2 h, 取出倒入预热至150℃的钢板上,在600℃退火1h,然后缓 慢降至室温。

采用 Perkin Elmer Instruments Lambda 35 UV/Vis Spectrome ter 测量玻璃的吸收光谱:玻璃的激发光谱和发射光谱由日本 岛津 MPF 4 型荧光分光光度计(氙灯泵浦源)测量。样品厚度 为 3.10 mm。用阿贝折射仪测得样品的折射率为 1.64。利用 阿基米德原理测量玻璃的密度 P= 3.36 g• cm⁻³。

2 结果与讨论

LBLB: $x \text{Sm}^{3+}$ (x = 1) 玻璃的吸收光谱如图 1 所示。图 1 中吸收光谱对应基态⁶H₅₀到激发态的跃迁,激发态光谱项标 于吸收谱线。采用于O理论对测得的吸收光谱进行拟合。根 据 FO 理论, 稀土离子 $4f^{N}$ 电子组态的 *SLJ* 能级向 $fL \neq f$ 能级 发生电偶极跃迁的振子强度为

$$P_{\text{calc}}[(S, L) J; (S'L') f] = \frac{8\pi^2 mc}{3h\lambda(2J+1)} \frac{(n^2+2)^2}{9n} \times \sum_{l=2,4,6} \Omega_l |\langle (S, L) J \parallel U^{(\theta)} \parallel (S', L') f \rangle|^2$$
(1)

其中h为普郎克常数,c为光速,m为电子质量, λ 为谱线中 心波长, n为玻璃的折射率, Ω_i 为 HO 强度参数, $|\langle (S, S, S)\rangle$

收稿日期: 2004 07 06, 修订日期: 2004 11-21

基金项目:国家自然科学基金(19774056)及大连轻工学院海外引进人才启动基金资助项目

L) $J \parallel U^{i_0} \parallel (S', L') J' \rangle \parallel^2$ 是矩阵元的平方。

Fig. 1 Absorption spectrum of Sm³⁺ doped LBLB glasses

由下式求出基态到激发态的振子强度
$$P_{exp} = \frac{mc^2}{\pi e^2 N} \int d\bar{\nu} d\bar{\nu}$$
(2)

其中
$$\alpha(\overline{\nu}) = \frac{\ln I_0(\nu) / I(\nu)}{d} = 2.303 E(\overline{\nu}) / d$$
 (3)

式中 m 和 e 分别是电子的质量和电荷; c 为光速; N 为 Sm³ 的浓度; $\alpha(\overline{\nu})$ 为吸收系数, 它是波数 $\overline{\nu}$ 的函数。d 是吸收路

径长度。

采用最小二乘拟合法^{15, 16}),通过实验中求得的吸收跃迁 振子强度可以拟合出 J O 强度参数 Ω_0 。求得 3 个唯象强度参数: $\Omega_2 = 6.81 \times 10^{-20}$; $\Omega_4 = 4.43 \times 10^{-20}$; $\Omega_6 = 2.58 \times 10^{-20}$ cm²。

根据 Ω 参数,可以计算出 Sm³⁺ 的荧光发射参数。由 Ω 值和 Sm³⁺ 的约化矩阵元,根据下式可求出 SLJ $\stackrel{\rightarrow}{\rightarrow}$ $S \stackrel{\prime}{L} \stackrel{f}{f}$ 电偶 极跃迁的辐射跃迁概率A,荧光分支比^β,辐射寿命τ。分别 表示为

$$A[(S, L)J; (S', L')J'] = A_{ed} = \frac{64\pi^4}{3h\lambda^3(2J+1)} \times \frac{n(n^2+2)^2}{9}S_{ed}$$
(4)

式中 S_{ed} 为电子偶极振子强度。

$$S_{\text{ed}} = e^{2} \sum_{t} \Omega_{t} | \langle (S, L) J \parallel U^{(t)} \parallel (S', L') J' \rangle |^{2} (5)$$

$$\beta [(S, L) J; (S', L') J'] = \frac{A [(S, L) J; (S', L') J']}{\sum_{t} |S_{t}(S, L) J_{t}(S, L') J_{t}(S', L') J']}$$
(6)

$$\tau_{\rm rad} = \left\{ \sum_{\substack{S, L, J \\ S \neq L, J}}^{N} A \left[(S, L) J ; (S', L') J' \right] \right\}^{-1}$$
(7)

计算数值列于表1。

Table 1 Radiative transition probabilities, fluorescence branching ratio and radiative lifetimes of LBLB: Sm³⁺

Transition	Energy/ cm ⁻¹	$U^{(2)2}$	$U^{(4)2}$	$U^{(6)2}$	A_{ed} / \bar{s}^{-1}	β/%	τ_{rad}/ms
${}^4G_{52} \xrightarrow{\rightarrow} {}^6F_{11/2}$	6 851	0	0.0001	0 000 5	0.27	0.06	
$\rightarrow {}^{6}F_{9/2}$	8 350	0.0018	0.0003	0 000 2	3.97	0.89	
$\rightarrow {}^{6}F_{7/2}$	963 7	0	0.0017	0 000 2	3.49	0.79	
$\rightarrow {}^{6}F_{5/2}$	104 93	0.0072	0.001 7	0 000 2	31.95	7.18	
$\rightarrow {}_{6F_{3/2}}$	1 10 16	0.0011	0.0001	0	5.13	1.15	
$\rightarrow {}^{6}H_{15/2}$	1 10 91	0	0	0 000 2	0.34	0.08	2 25
$\rightarrow {}^{6}F_{1/2}$	112 03	0.0010	0	0	4.63	1.04	
$\rightarrow {}^{6}H_{13/2}$	125 78	0	0.000 2	0 001 8	5.34	1.20	
$\rightarrow {}^{6}H_{11/2}$	140 25	0	0.0053	0 002 1	38.67	8.69	
$\rightarrow {}^{6}H_{9/2}$	154 80	0.0112	0.0067	0 002 0	199.74	44.89	
$\rightarrow {}^{6}H_{7/2}$	166 67	0.0001	0.008 6	0 008 9	138 64	31.16	
$\rightarrow {}^{6}H_{5/2}$	177 62	0.0003	0.0006	0	12.77	2.87	

在 365 nm 紫外灯下观察, LBLB: Sm³⁺ 玻璃发出强的橙红 色光。用 410 nm 波长光激发 LBLB: Sm³⁺ 玻璃得到的发射光 谱示于图 2, 它由峰值为 563, 599 和 646 nm 三个发射 峰组 成,分别对应 ${}^{4}G_{5/2} \stackrel{\rightarrow}{}^{6}H_{5/2}, {}^{4}G_{5/2} \stackrel{\rightarrow}{}^{6}H_{7/2}$ 和 ${}^{4}G_{5/2} \stackrel{\rightarrow}{}^{6}H_{9/3}$ 能级 跃迁,其中以 ${}^{4}G_{5/2} \stackrel{\rightarrow}{}^{6}H_{7/2}$ 跃迁的光谱强度最强。

图 3 为监测 Sm³⁺ 的 650 nm 发射的激发光谱,它是由 1 条峰值 \leq 240 nm 的宽谱带和峰值分别在 348,365,378,406, 420,444,478 nm 的激发峰组成的,激发峰中以 406 nm 激发 峰值为最强。 \leq 240 nm 的宽谱带是 Sm³⁺ 离子的电荷迁移带 (CTS),其他激发峰均属 Sm³⁺ 的 4/-4/ 高能级跃迁。激发光谱 表明,473 和 488 nm 波长可有效激发 IBLB: Sm³⁺ 玻璃,获得 高强度可见荧光,表明氩离子激发器可作为 LBLB: Sm³⁺ 玻璃 的有效泵浦源,预示 Sm³⁺ 掺杂的稀土硼酸

© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

盐玻璃有望成为优良新型特种发光和激光玻璃。

Fig. 3 Excitation spectrum of Sm³⁺ doped BLBL glasses

3 结 论

本工作制备了高效橙红色发光的 Sm³⁺ 掺杂稀土硼酸盐 玻璃,测定了室温下材料的吸收和发射光谱,根据 \pm O 理论 拟合了 Sm³⁺ 离子的晶场调节参数 Ω_2 , Ω_4 , Ω_6 分别为6.81× 10^{-20} , 4.43×10^{-20} 和 2.58× 10^{-20} cm²,进一步计算出了各个 能级跃迁的自发辐射跃迁概率、辐射寿命、荧光分支比。紫 外激发下 LBLB: Sm³⁺ 玻璃发出强的橙红光,发射谱带由 563,599和 646 m 组成,其中599 m 发射带最强。激发光谱 表明, 氩离子激发器的 473 和 488 nm 激光线可有效激发 LBLB: Sm³⁺ 玻璃,获得高强度可见荧光,表明 LBLB: Sm³⁺ 玻 璃有希望成为优良新型特种发光和激光玻璃。

考文献

- [1] CHEN Baor jiu, WANG Hair yu, HUANG Shir hua, et al(陈宝玖, 王海宇, 黄世华, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2001, 21(3): 287.
- [2] JIANG Xue yin, ZHANG Zhi lin, XU Shao hong, et al(蒋雪茵, 张志林, 许少鸿, 等). Journal of Chinese Rare Earths Society(中国稀土学报), 1995, 13(1): 21.
- [3] HUANG Shi hua, CHEN Bao jiu, WANG Xiao jun, et al(黄世华,陈宝玖,王笑军,等). Chinese Journal of Luminescence(发光学报), 2002, 23 (3): 223.
- [4] Xu W, Denis J P, Ozen G, et al. Phys. Stat. Sol. A, 1993, 139: 503.
- [5] Lin Hai, Meredith Gerald, Jiang Shibin, et al. Journal of Applied Physics, 2003, 93(1): 186.
- [6] LIU Xing ren, et al(刘行仁,等). J. of Chinese Rare Earths Society(中国稀土学报), 1993, 11(2): 102.
- [7] YANG Sheng yi, WANG Zhen jia, XU Xu rong, ZHANG Li, YANG Zhan lan, WU Jir guang(杨盛谊, 王振家, 徐叙, 张 莉, 杨展澜, 吴瑾光). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2000, 20(6): 872.
- [8] DAI Shir xun, HU Lir li, JIANG Zhong hong(戴世勋, 胡丽丽, 姜中宏). Acta Optica Sinica(光学学报), 2000, 20(7): 995.
- [9] WANG Xiaor jun, LIN Hai, LIU Xingren(王晓君,林海,刘行仁). Journal of Chinese Rare Earths Society(中国稀土学报), 1999, 17(4): 318.
- [10] LIN Hai, LIN Jir ling, LIU Xing ren(林 海,林久令,刘行仁). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 1998, 18(6): 645.
- [11] CHEN Bao jiu, WANG Haining, E Shurlin, et al(陈宝玖, 王海宁, 鄂书林, 等). Chinese Journal of Luminescence(发光学报), 2001, 22(2): 139.
- [12] Farries M C, Morkel P R, Send J E Town. Electronics Letters, 1988, 24(11): 709.
- [13] Jayasankar C K, Babu P. Journal of Alloys and Compounds, 2000, 307: 82.
- [14] PAN Lirhua, WANG Shurying, DONG Xiang ming(潘利华, 王淑英, 董向明). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 1997, 17 (1): 113.
- [15] Camall W T, Fields P R, Rajnak K. J. Chem. Phys., 1968, 49: 4412.
- [16] Weber M J. Phys. Rev., 1967, 157: 262.

Calculation of Optical Parameters and Investigation of Luminescence Spectra in Sm³⁺ Doped Borate Glasses

YANG Dian lai¹, LIN Hai^{1*}, HOU Yan yan¹, XU Long quan¹, ZHAI Bin¹, BAN Li xia¹, LIU Gui shan¹, TANG Nai ling¹, WANG Shu chuan¹, MA Tie cheng¹, WANG Xiao jun², LIU Xing ren²

1. Faculty of Chemical Engineering and Materials, Dalian Institute of Light Industry, Dalian 116034, China

2. Changchun Institute of Physics, Chinese Academy of Sciences, Changchun 130021, China

Abstract In the present paper, Sm^{3+} doped borate glasses (LBLB) with high effective visible fluorescence emission have been synthesized. The absorption and fluorescence spectra of this glass were measured and analyzed. The absorption spectra were fitted by $\frac{1}{2}$ O theory, and the irr tensity parameters $\Omega_t = (2, 4, 6)$ were found to be 6.81×10^{-20} , 4.43×10^{-20} , and 2.58×10^{-20} cm², respectively, then the relative interr sity of spectral lines of every energy level transition, radiative transition probabilities, radiative lifetimes, and fluorescence branching ratio were calculated. Under the excitation of UV light, Sm³⁺ doped borate glasses (LBLB) emit bright salmon pink light. The excitation spectra indicate that argon laser is an effective excitation source in Sm³⁺ doped LBLB glasses.

Keywords Sm³⁺ ions; Borate glasses; Optical parameters; Luminescence spectra

(Received Jul. 6, 2004; accepted Nov. 21, 2004)

* Corresponding author