【化学测定方法】

固相萃取 - 高效液相色谱 - 串联质谱法检测贝类产品 7 种脂溶性贝类毒素

黄聪 李晓晶* 彭荣飞 干鸿

(广州市疾病预防控制中心,广州 510080)

[摘要] 目的:建立固相萃取、高效液相色谱串联质谱法测定贝类产品中 AZA1、YTX、OA、PTX2、GYM、SPX1、DTX -1 7 种脂溶性贝类毒素残留的方法。方法:贝类样品用甲醇提取后 Strata-X 固相萃取柱净化 ,甲醇洗脱。采用 Waters $Sun-Fire^{TM}C_{18}(100 \text{ mm} \times 2.1 \text{ mm} ,3.5 \text{ }\mu\text{m})$ 色谱柱 ,以乙腈 -2 mmol/L 乙酸铵水(80:20 v/v) 作为流动相 ,流速 0.2 ml/min ,采用电喷雾质谱电离 ,多反应监测模式(MRM) 对目标化合物定性及定量分析 ,外标法定量。结果:7 种贝类毒素线性相关系数均大于 0.998; 方法定量下限(LOQ) 为 $0.1 \text{ }\mu\text{g/kg} \sim 2.7 \text{ }\mu\text{g/kg}$; 高、中、低 3 个添加水平的平均加标回收率在 72.2% $\sim 101.9\%$ 相对标准偏差为 $2.0\% \sim 13.6\%$ 。结论:该方法灵敏度高、操作简单高效 适用于贝类样品中脂溶性贝类毒素的定量及确证分析。

[关键词] 脂溶性贝类毒素; 高效液相色谱 - 串联质谱; 固相萃取

[中图分类号] 0657.63

[文献标识码] A

「文章编号] 1004 - 8685(2011)05 - 1075 - 03

Determination of 7 lipophilic shellfish toxins in shellfish by SPE and High performance Liquid chromatography — Tandem Mass spectrometry

 $HUANG\ Cong\$, $LI\ Xiao\ -jing^*\$, $PENG\ Rong\ -fei\$, $YU\ Hong\$ (Guangzhou center for disease control and prevention , Guangzhou 510080 , China)

[Abstract] Objective: A solid phase extraction (SPE) combined with high performance liquid chromatography – electrospray i-onization triple – quadruple tandem mass spectrometric (HPLC – ESIMS/MS) method has been established for the simultaneous determination of 7 shellfish toxins , including AZA1 , YTX , OA , PTX2 , GYM , SPX1 and DTX1 in shellfish products. Methods: The shellfish toxins were extracted by methanol and cleaned up on a Strata – X solid phase extraction column. The analytes were eluted from the SPE cartridge with methanol. The separation of 7 shellfish toxins was carried out by a Waters SunFire TM C $_{18}$ ($100 \text{ mm} \times 2.1 \text{ mm}$, $3.5 \text{ }\mu\text{m}$) column using a mobile phase of acetonitrile -2 mmol/L ammonium acetate water (80:20 , v/v) with a flow rate of 0.20 ml/min. The target compounds were confirmed and quantified by electrospray ionization mass spectrometry under multiple reactions monitoring (MRM) mode with external standard method. Results: The correlation coefficients of 7 shellfish toxins were more than 0.998. The limits of quantification (LOD) of the method were between 0.1 μ g/kg and 2.7 μ g/kg. The average spiked recoveries of 7 shellfish toxins at three concentration levels were between 72.2% and 101.9% , and the relative standard deviations (RSDs) ranged from 2.1% to 13.6% . Conclusion: The method was sensitive , effective and simple , and was suitable for the determination and confirmation of lipophilic shellfish toxins in shellfish products.

[Key words] Lipophilic shellfish toxins; HPLC - ESIMS/MS; SPE

贝类毒素(Shellfish toxin) 通常也称为藻毒素 是一类通过 贝类摄食海水中的有毒生物 有毒生物毒素在贝类体内累积、转化而对人类生命健康安全产生危害的生物活性物质 [1]。海洋贝类毒素是目前已知的最毒的一类有机化合物之一 ,人误 食了含有毒素的贝类后可能引起中毒甚至死亡。贝类毒素可以根据溶解性分为水溶性贝毒和脂溶性贝毒。目前主要的脂溶性贝毒有大田软海绵酸(Okadaic Acid ,简称 OA) 及其衍生物鳍藻毒素 -1(DTX-1) ,紫夷贝毒素(Yessotoxin ,YTX) ,大环内酯类贝类毒素 -2(PTX-2) ,原多甲藻酸贝毒(azaspirac-

[基金项目] 广州市医药卫生科技资助项目(201102A213223) [作者简介] 黄聪(1961-) 男 副主任技师 ,主要从事理化检验 研究。 ids , AZA) 螺环内酯毒素(13 - Desmethyl spirolide C , SPX1) , 米氏裸甲藻毒素(Gymnodimine , GYM) 。

目前,脂溶性贝毒最常用的测定方法有小白鼠生物分析法[2-4]、高效液相色谱法[5-8]。近年来已有报道采用液相色谱 - 质谱法[9-12]、高效液相色谱四极杆飞行时间质谱[13] 进行测定。其中,液相色谱 - 质谱法灵敏度高,选择性好,可提供待测物的结构信息,是理想的贝类毒素分析方法。然而,文献报道的贝类样品前处理的方法,如甲醇提取样品后,直接进样测定或甲醇: 水(8:2 y/v) 提取样品后加入盐和氯仿萃取净化测定 均不能起到很好的净化效果。固相萃取(SPE) 净化方式是一种应用广泛的样品前处理技术,其具有净化效果好,重现性高 回收率高等优点。目前尚未有 SPE 结合液相色谱 - 串联质谱同时测定 7 种脂溶性贝毒的报道。

本文采用固相萃取净化技术建立了贝类样品中 7 种脂溶性贝类毒素同时测定的高效液相色谱 - 串联质谱的测定方

^{*} 通讯联系人 E - mail: saiint@163.com

法 、该方法简便、灵敏高、专属性强 ,可用于贝类毒素的中毒应 急检测和日常检测。

1 实验部分

1.1 主要试剂

贝类毒素标准品: AZA1、YTX、OA、PTX2、GYM、SPX1 均购 自加拿大海洋生物科学研究所(NRC); DTX-1购自日本和 光纯药工业株式会社 Wako 公司; 甲醇、乙腈均为色谱纯(Merck); 乙酸铵为色谱纯; 实验用水为二次蒸馏超纯水。

1.2 仪器设备

Waters e2695 - TQMS Xevo[™]高效液相色谱 - 串联质谱仪 (Waters 公司), Waters SunFire TM C₁₈ (100 mm × 2.1 mm, 3.5 µm) 色谱柱; Strata[™] - X 固相萃取小柱 60 mg 3.0 ml(美 国 Waters 公司); TDL - 5 型低速台式大容量离心机(上海安亭 科学仪器厂); MS2 迷你涡旋振荡器; 高速匀浆机。

1.3 标准品的配制

准确吸取适量的 AZA、YTX、OA、PTX2、GYM、SPX1 6 种贝 类毒素标准品溶液,用甲醇溶解稀释分别配制为 AZA1 (0.124 mg/L) \YTX(0.546 mg/L) \OA(1.425 mg/L) \PTX2 (0.858 mg/L)、GYM(0.502 mg/L)、SPX(0.705 mg/L) 的标准 储备溶液。并准确称取适量的 DTX-1 对照品 用甲醇溶解稀 释 配制成 1.00 mg/L 的标准储备液。

1.4 样品前处理

称取匀浆后样品 2.0 g 于离心管中 "加 6 ml 甲醇溶液 涡 旋提取 1 min 后,以 3500 rpm 离心 5 min ,取上清液 1.2 ml 于 离心管中 加2.8 ml 纯水稀释后成4.0 ml 样品液 待上固相萃 取柱净化。

1.5 样品净化

先用 1 ml 甲醇活化 Strata[™] - X 固相萃柱 再用 1 ml 30% 甲醇平衡萃取柱 ,上样4.0 ml 后 ,用1 ml 20% 甲醇洗固相萃取 柱 用 1.2 ml 甲醇洗脱并收集洗脱液 待进样分析。

1.6 HPLC - MS/MS 分析条件

液相色谱条件 Waters SunFire™ C₁₈ (100 mm × 2.1 mm, 3.5 µm) 色谱柱; 流动相: A 为乙腈 B 为含2 mmol/L 乙酸铵的 水溶液,采用等度洗脱方式,A:B(80:20,v/v);流速: 0.2 ml/min; 进样量: 10 μl 柱温: 30 ℃。

质谱条件 电离方式: ESI 正负切换; 毛细管电压为: 3.0 kV; 离子源温度: 150℃; 脱溶剂气温度: 350℃; 脱溶剂气流 量: 650 L/h; 锥孔反吹气流速为 50 L/h。多反应监测各贝类毒 素离子对及对应的锥孔电压、碰撞能量见表 1。

表 1 7 种贝类毒素的质谱 MRM 模式的采集参数

贝类毒素	确证离子 m/z	离子模式	锥孔电压 U/V	碰撞能量 E/eV
AZA1	842.5 > 654.5 * ,842.5 > 362.2	ESI +	50	55 ,60
YTX	1141.6 > 1061.5 * ,1141.6 > 925.5	ESI -	40	55 ,58
OA	803.5 > 255.2 * 803.5 > 113	ESI -	65	60 ,65
PTX2	876.5 > 823.5 * ,876.5 > 213.1	ESI +	40	25 ,40
GYM	508.3 > 490.3 * ,508.3 > 392.3	ESI +	47	24 35
SPX	692.5 > 164 * ,692.5 > 444.3	ESI +	47	60,55
DTX - 1	817.5 > 255.2 * ,817.5 > 113	ESI -	65	55 ,60

[&]quot; * "定量离子

2 结果与讨论

2.1 色谱条件的优化

分别考察了流动相甲醇 - 水 ,乙腈 - 水体系 ,结果表明甲 醇-水体系中负离子模式的 YTX、OA、DTX-1 色谱峰响应变 小且 PTX2 峰型展宽 而乙腈 - 水体系色谱峰变窄且分离效果 好响应大,另外又分别考察了在流动相中添加甲酸,乙酸铵, 甲酸铵-甲酸缓冲溶液 结果表明添加乙酸铵效果最好 ,且大 部分化合物响应变大且保留时间适中。分别考察在流动相中 添加不同浓度 1 mmol/L、2 mmol/L 和 5 mmol/L 的乙酸铵后对 目标化合物的离子化效率的影响,结果表明添加 2 mmol/L 乙 酸铵离子化效率最高响应最大。因此,本实验最终确定以乙 腈-2 mmol/L 乙酸铵水溶液(80:20 ,v/v) 为流动相,进行等 度洗脱。

2.2 提取剂的选择

分别考察了甲醇、80%甲醇水溶液和丙酮作为提取溶剂 提取贝类样品中脂溶性贝毒的提取效率。结果发现只有甲醇 对检测的 7 种贝类毒素提取的回收率大于 70% 其它提取溶 剂均不理想。因此选择甲醇为提取溶剂。

2.3 样品净化条件的选择

采用固相萃取(SPE)净化时,目标化合物的回收率与SPE 小柱性质及洗脱溶剂性质有关。本实验分别比较了 StrataC18 - E、Strata - X、Speedisk Octadecyl C18 及 Oasis HLB 柱的富集 净化效果。结果表明净化后洗脱收集的样品溶液颜色 Speedisk Octadecyl C18 柱最深 Strata - X 最浅并且得到的质谱 图干扰也最少,表明Strata-X净化效果最好。比较回收率 (见图1) 结果表明 Oasis HLB 回收率最低 尤其是 YTX 和 OA 回收率只有 58% 和 65% "Speedisk Octadecyl C18 和 Strata - X 回收率均较高都达到了 70% 以上,但 Strata - X 净化效果较 Speedisk Octadecyl C18 好很多,综合考虑到净化效果和回收 率 最终选择 Strata - X 为固相萃取净化柱。

由于贝类毒素标准品比较有限,本实验选用规格为 60 mg/3 ml的 Strata - X 柱 按前述方法处理 流出液及淋洗液 均未检出目标物 采用 1.2 ml 甲醇进行洗脱 ,目标物能完全洗 脱。回收率理想。

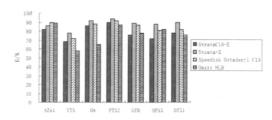


图1 固相萃取柱对回收率的影响

选用不含贝类毒素的空白扇贝样品 按"1.4"和"1.5"方 法制备空白基质溶剂 并分别添加贝类毒素混合标准溶液 配 制成系列标准溶液 ,从低浓度到高浓度依次上机测定。以各 贝类毒素定量离子的质量色谱峰面积为纵坐标,质量浓度 $(\mu g/L)$ 为横坐标 ,绘制标准曲线(结果见表 2)。可以看出 7 种贝类毒素在线性范围内呈良好的线性关系 相关系数大于 0.998.

表 2 7 种贝类毒素的标准曲线及相关系数

贝类毒素	线性范围(μg/L)	线性方程	相关系数 r
AZA1	0.248 ~49.60	y = 290.8x + 81.2	0.9993
YTX	2.184 ~218.4	y = 18.0 x - 5.8	0.9982
OA	1.425 ~ 285.0	y = 144.2 x + 664.9	0.9995
PTX2	0.858 ~171.6	y = 159.8x + 743.6	0.9983
GYM	0.502 ~ 100.4	y = 6836.4 x + 5107.3	0.9996
SPX1	0.705 ~ 141.0	y = 4499.3x + 5686.9	0.9992
DTX1	2.000 ~ 200.0	y = 76.5 x + 225.3	0.9992

2.5 方法的灵敏度与精密度

采用空白样品中添加目标化合物的方法 ,按照 "1.4"和 "1.5"步骤处理并按 "1.6"条件检测 ,根据定量子离子质量色谱峰信噪比 $S/N \ge 10$ 为方法的定量下限 ,得出 7 种贝类毒素在样品中的定量下限 (LOD) 为 $0.1~\mu g/kg \sim 2.7~\mu g/kg$,见表 3 。

在空白扇贝样品中添加高、中、低三个水平的七种贝类毒素标准进行加标回收率实验 结果见表 3。从表中可以看出 7种贝类毒素在空白扇贝样品中的平均回收率为 72.2% ~101.9% 相对标准偏差为 2.0% ~13.6%。空白扇贝样品中添加中等浓度的 7种毒素标准溶液的特征离子质量色谱图见图 2。

表 3 贝类样品中 7 种贝类毒素添加回收率及检出限实验结果

贝类毒素	添加水平(µg/kg)	回收率(%)	相对标准偏差(% n = 6)	定量限(μg/kg)
AZA1	2.48 ,12.4 ,62.0	86.8 93.2 80.2	6.2 5.8 2.0	0.2
YTX	10.9 54.6 273	72.2 90.4 99.3	6.0 ,11.6 ,10.9	2.7
OA	14.2 71.2 356	91.7 88.5 87.5	13.5 9.5 7.6	1.7
PTX2	8.58 42.9 214	88.5 ,101.9 ,95.0	9.0 7.2 5.3	0.3
GYM	5.02 25.1 ,126	84.9 92.0 74.4	11.1 7.6 5.4	0.1
SPX1	7.05 35.2 ,176	94.6 86.8 76.2	11.8 ,13.6 5.4	0.1
DTX1	1.00 50.0 250	90.4 82.0 84.2	2.8 ,13.0 ,7.9	2.2

2.6 样品的分析

采用上述建立的方法对市售的 10 份贝类样品中 7 种脂溶性贝类毒素进行了检测。通过二级质谱的确证分析结果 ,其中有一份牡蛎样品检测出含有 OA 8.52 µg/kg。

3 结论

通过对样品前处理条件的优化和改进,建立了固相萃取结合高效液相色谱 - 串联质谱测定贝类样品中7种脂溶性贝毒的检测方法。该方法处理样品简便、快速且灵敏度、重现性、回收率均能满足贝毒分析的要求。

[参考文献]

- [1] 周名江,李均,于仁诚,等. 赤潮藻毒素研究新进展[J]. 中国海洋药物,1999,18(3):48.
- [2] 陈彬,黄晓蓉,郑晶,等. 福建口岸出口贝类产品毒化状况的监测分析[J]. 中国卫生检验杂志,2006,16(6):724.
- [3] 杨美兰, 贾晓平 林钦 等. 南海海域重要养殖水域牡蛎体中的腹泻性贝类毒素[J]. 海洋环境科学, 2009, 28(4):410.
- [4] 杨莉,杨维东,刘洁生,等.广州市售贝类麻痹性贝毒和腹泻性贝毒污染状况分析[J]. 卫生研究,2006,35(4):435.

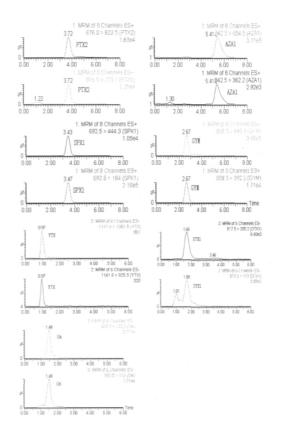


图 2 空白样品中添加七种贝类毒素标准的 HPLC – MS/MS 图谱

- [5] 傅云娜 陈则玲. 腹泻性贝毒的高效液相色谱法测定条件改进及 其运用[J]. 海洋通报 2003 22(1): 92.
- [6] 袁骐. 舟山渔场及其邻近海域腹泻性贝类毒素的初步研究[J]. 水产学报,2002,26(6):528.
- [7] James F L , Sonia R , Cathie M. Liquid chromatographic determination of okadaic acid and dinpohysistoxin – 1 in shellfish after derization with 9 – chloromethylanthracene [J]. Journal of Chromatography A , 1996 , 721(2):364.
- [8] 刘仁沿,付云娜,关道明. HPLC 分析检测我国沿海双壳贝类体内 赤潮毒素 [J],海洋环境科学,2004,23(1):70.
- [9] KROCK B, TILLMANN U, JOHN U, et al. LC MS MS aboard ship: tandem mass spectrometry in the search for phycotoxins and novel toxigenic plankton from the North Sea [J], Anal Bioanal Chem, 2008, 392(5): 797.
- [10] GERSSEN A, MULDER P PJ, MCELHINNEY MA, et al. Liquid chromatography – tandem mass spectrometry method for the detection of marine lipophilic toxins under alkaline conditions [J]. J Chromatogr A, 2009, 1216(9):1421.
- [11] 方晓明,唐毅锋,刘俊平,等. 高效液相色谱/四极杆-飞行时间质谱测定腹泻性贝毒研究[J]. 检验检疫科学,2003,13(6):14.
- [12] ITO S, TSUKADA K. Matrix effect and correction by standard addition in quantitative liquid chromatographic mass spectrometric analysis of diarrhetic shellfish poisoning toxins [J]. J Chromatogr A, 2001, 943(1): 39.
- [13] PUENTE PF, SAEZ M JF, HAMILTON B, et al. Rapid determination of polyether marine toxins using liquid chromatography multiple tandem mass spectrometry [J]. J Chromatogr A, 2004, 1056 (1 2):77.

(收稿日期: 2011 - 03 - 01)