纳米铁为脱氯菌供电降解三氯乙烯实验研究

修宗明¹, 李铁龙^{1,3}, 金朝晖^{1,3*}, Pedro J. Alvarez²

(1. 南开大学环境科学与工程学院, 天津 300071; 2. Department of Civil and Environmental Engineering, Rice University, Houston 77005, USA; 3. 南开大学环境污染过程与基准教育部重点实验室, 天津 300071)

摘要:采用一种从氯乙烯污染场址土壤中提取的脱氯菌种(*Dehalococoides* spp.)进行三氯乙烯(TCE)降解实验,研究纳米铁厌 氧腐蚀产氢为该脱氯菌种提供电子的可能性.结果表明,在甲醇做电子供体时,稀释 25 倍的菌液[(2.0±0.44)×10⁵ cel/mL)] 可以在 96 h 内将 20 mg L TCE 完全降解,并在 190 h 时有 2 706 4mol 乙烯产生.而在无甲醇做电子供体时,96 h 内只有部分TCE 转化为顺二氯乙烯(*cis*-DCE),且 190 h 时几乎无乙烯产生(0.159 4mol),因此无电子供体时菌液脱氯活动不能维持.但在 4 g L 纳米铁腐蚀产氢的情况下,脱氯菌可以利用纳米铁产生的阴极氢维持脱氯活动,在 131 h 内将 20 mg L TCE 完全降解,并且其 耦合的脱氯速率高于纳米铁单独降解时的速率.从乙烯的产量分析中可以看出,纳米铁供电时 190 h 后由脱氯菌产生的乙烯 量为 1.187 4mol,明显低于甲醇做电子供体时乙烯的产量2 706 4mol,表明纳米铁可能对微生物存在一定的毒性效应.同时反 应190 h 后乙炔的产量为 0 109 4mol,相对低于与纳米铁单独降解TCE 时的产量 0.161 4mol,说明微生物在无电子供体的情况 下,竞争利用了纳米铁与水反应产生的电子导致乙炔的生成量降低.上述结果表明,4 g L的纳米铁与水反应生成的活性氢可 以为脱氯菌提供电子,并维持其脱氯活动,这对纳米铁和脱氯菌耦合应用于地下水的有机氯修复具有重要的实际意义.

关键词:纳米铁;脱氯菌;TCE;电子供体

中图分类号: X172 文献标识码: A 文章编号: 0250-3301(2009) 06-1791-06

Microbial Reductive Dechlorination of TCE with Nano Iron Serving as Electron Donor

XIU Zong-ming¹, LI Tie long^{1,3}, JIN Zhao hui^{1,3}, Pedro J. Alvarez²

(1. College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; 2. Department of Civil and Environmental Engineering, Rice University, Houston 77005, USA; 3. Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Nankai University, Tianjin 300071, China)

Abstract: A trichloroethylene (TCE) dechlorinating enrichment (*Dehalococoides* spp.), which was isolated from soil of chlorinated ethene contaminated site, was used to investigate whether nano-scale zero valent iron (NZVI) could serve as electron donor for this consortium via cathodic H_2 production during anaerobic corrosion. The results show that in the presence of methanol serving as electron donor, dechlorinating culture of 25 fold dilution [$(2.0 \pm 0.44) \times 10^5$ cel/ mL] degraded 20 mg/L TCE completely in 96 h, which was accompanied by the production of 2.706 µmol ethene in 190 h. Methanol-free control caused partial degradation of TCE to primarily *cis*-DCE in 96 h, with only 0.159 µmol ethene produced in 190 h. This indicates bacteria cannot reduce TCE to ethene without electron donor. But when 4 g/L NZVI was added as sole electron donor, this dechlorinating culture degraded 20 mg/L TCE into ethene and vinyl chloride (VC) in 131 h at a speed higher than that by NZVI alone. Compared to 2.706 µmol ethene produced by *Dehalococcoides* spp. with methanol added as the electron donor, there was only 1.187 µmol ethene produced by bacteria with NZVI serving as the electron donor, which was relatively lower than 0.161 µmol produced by NZVI alone, indicating bacteria competed with NZVI under electron deficient condition. In conclusion, NZVI could serve as electron donor and support dechlorinating culture ground water remediation.

Key words: NZVI; dechlorinating culture; TCE; electron donor

三氯乙烯(TCE)作为一种重要的挥发性有机溶 剂,被广泛的应用到电镀、干洗、金属加工等工业中, 其广泛的应用和不合理的排放,给土壤和地下水环 境造成了严重的污染^[1,2].近年来,国外学者从受有 机氯污染的土壤和河流底泥中提取到可以高效降解 TCE 的厌氧脱氯菌种^[3~6],该菌种可以在厌氧条件 下把TCE 作为电子受体,以其他还原性物质(如甲

醇、醋酸盐、氢气^[7~9]等)为电子供体,将TCE还原为乙烯等产物,但脱氯过程中还原性物质的加入会给

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

收稿日期: 2008-07-11;修订日期: 2008-09-08

基金项目:教育部博士点新教师基金项目(20070055053);天津市重点 基金项目(07JCZDJC01800)

作者简介:修宗明(1980~),男,博士研究生,主要研究方向为污染环 境修复技术, F-mail: xiuzongming@gmail.com

^{*} 通讯联系人,E-mail: jinzh@ nankai. edu. cn

地下水修复带来二次污染和安全隐患, 限制了微生

物在地下水污染修复中的应用。

与此同时,纳米铁修复地下水中 TCE 技术迅速 发展,在实验室研究的基础上 Elliott 等^[10] 已经开始 将纳米铁及其复合金属注入到有机氯污染的地下水 中,开展现场实验研究.但是纳米铁在土壤和地下水 中移动性较差^[11,12],不能实现对 TCE 的彻底修复. 作为一种强还原材料,纳米铁在自身还原脱氯的同 时可以产生大量富余的活性氢,如果脱氯菌可以利 用这些活性氢作为电子供体降解 TCE,不仅可以缓 解氢气聚集造成的安全隐患^[13,14],同时可以作为纳 米铁修复的'抛光剂'',将纳米铁修复后空隙中残留 的 TCE 彻底修复.基于此,本研究将纳米铁与脱氯 菌耦合进行降解 TCE 的试验,探讨纳米铁为脱氯菌 提供电子的可行性,以期为土壤和地下水的实际修 复提供理论基础.

1 材料与方法

1.1 化学试剂及仪器

三氯乙烯(99%, Sigma), 顺二氯乙烯(99%, Sigma), 甲醇(HPLC级, Fisher Scientific), Hepes 缓冲 试剂(Fisher Scientific). 气体标准样品(体积比):乙 烯(984×10⁻⁶), 乙炔(1030×10⁻⁶) 均购自 Alltech Associates 公司, 以氦气平衡. 纳米铁由日本 Toda Kogyo 公司提供(40~60 μ m, 23 m²/g).

1.2 分析方法

TCE 及其降解产物用 HP5890 气相色谱仪采用 顶空法测定,以气密性进样针(VICI 公司)取 100 坦 顶空气体测定^[15]. 色谱柱类型: 6ft. × 1/8 外径, 60/ 80 Carbopack B/1% SP 1000. 检测器为火焰离子化检 测器(FID),检测温度为 300℃. 气相色谱柱炉温度 程序为: 50℃保持 2 min,以 40 ℃/min速度升温至 200℃,在 200℃持续 6 min^[13]. 氦气作为载气, 流速 14 mL/min. 乙烯,乙炔等气体标准曲线采用气密性 进样针直接进样制作. TCE, *cis*-DCE 等采用与实验 完全相同的 250 mL 棕色血浆瓶制作.

1.3 微生物培养

实验采用的脱氯菌种为一种从氯乙烯污染场址 土壤中提取、富集、培养的混合菌种,能够迅速有效 地降解 TCE 等有机氯污染物,已经被成功地应用于 四氯乙烯污染源的生物强化实验研究^[16,17].菌种采 用 20 L 高密度聚氯乙烯桶培养保存,每天将 0.25 mmol 的 TCE 溶于 3 mmol 的甲醇后注射到培养桶 中,并以一定量的新培养液代替部分菌液,维持该培 养器的水力停留时间为 80 d 左右.

脱氯菌培养液采用去离子水配制,分别取10 mL预先配制的浓缩溶液至1L去离子水中:基础盐 溶液(40 g/L KCl, 40 g/L MgCl²·6H₂O, 40 g/L NH₄Cl, 14 g/L KH²PO₄, 2.5 g/L CaCh²·2H₂O);微量元素溶液 I (50 mg/L ZnCh, 50 mg/L MnCl²·4H₂O, 50 mg/L H³BO₃, 250 mg/L CoCl²·6H₂O, 50 mg/L NiCh²·6H₂O, 50 mg/L Na₂MoO₄·2H₂O);微量元素溶液 II (1 000 mg/L (NaPO₃)₁₆, 250 mg/L KI, 50 mg/L NH₄VO₃)^[15]. 培养液在高温高压下灭菌处理后,以氮气曝气 30 min 除氧,随后转移到厌氧箱中,加入碳酸氢钠(7~ 10 g/L)作为培养液缓冲溶液,另采用 300 mg/L Na²S •9H₂O 和 40 mg/L FeCl²·4H₂O 来还原培养液^[18]. 所 有脱氯实验均在此厌氧培养液中进行.

1.4 DNA 提取测定

微生物 DNA 样品采用 MoBio[™]试剂盒(MoBio 公司)在实验开始前及实验过程中严格按照试剂盒的操作步骤提取,每个样品均采用 3 次平行样品对照. DNA 样品浓度和纯度(A260/A280)采用分光光度计 (Amersham 公司)测定.提取后的 DNA 样品保存于 - 20℃(Kelvinator 公司)冷柜中.

采用 7500 型实时定量 PCR(AB 公司) 测定 TCE 降解菌株 *Dehalococcoides* spp. 的细胞浓度. 每个 PCR 扩增混合液中含有 1 × Taqman PCR Master Mix[®](AB 公司); 0.5 μ mol/L 的正向和反向突变引物, 0.25 μ mol/L探针, 4 μ L 样品 DNA, 最后采用无 DNA 酶水 定容至 25 μ L. 正向逆向引物和探针(表 1) 均从联合 DNA 技术公司获得. PCR 反应升温程序为: 50 ℃保持 2 min, 95 ℃保持 10 min, 95 ℃ 40 循环, 最后 60 ℃保持 1 min.

表 1 Dehalococcoides spp. 引物及探针基因序列^[19-22]

Tak	ole 1	Gene sequence	of prime	r and	probe for	r Dehal ococcoides	spp.
-----	-------	---------------	----------	-------	-----------	--------------------	------

基因类型	基因序列
正向突变引物	5– CT GGAGCT AATCCCCCAAAGCT-3
逆向突变引物	5-CAACITCATGCAGGCCGG-3
探针	5-FAM-T CCT CAGIT CGGATT GCAGGCTGAA 3'

采用纯种 Dehalococcoides spp. 菌种, 按照 10 倍 序列稀释, 以实时定量 PCR 测定其 165 rDNA 拷贝数 Ct 值, 与已知 Dehalococcoides spp. 菌种稀释序列浓度 做标准曲线^[23].

1.5 实验方法

所有脱氯菌实验均采用 250 mL 棕色血浆瓶及 点。气密性瓶盖(Supelco公司)在手套式厌氧箱(,Coy Laboratory Products 公司) 中准备. 将一定量混合脱氯 菌液接种到棕色血浆瓶中, 补充厌氧培养液至 100 mL, 相应地加入一定量的纳米铁、纯 TCE 或溶于甲 醇中的 TCE. 采用 Hepes 溶液控制反应液 pH 值为 7.2. 在 22℃条件下, 将反应瓶置于平板振荡器上, 以 200 r/ min转速振荡反应. 菌种接种之前, 采用混合 气体(20% CO₂, N₂ 平衡) 曝气 30 min, 吹掉所有残 留的有机氯污染物^[24]. 采用高压稳定杀菌后的菌种 作为空白, 定时测定反应瓶中 TCE 及其降解产物 浓度.

2 结果与讨论

2.1 最佳脱氯菌浓度实验

与实验室制备的纳米铁相比,日本 Toda Kogyo 公司的纳米铁反应活性较低,因此其可以保证较长 时间的产氢供电,但是 4 g/L的纳米铁仍然可以将 20 mg/L(15.2 µmol)的TCE 在 5 d 内完全降解掉^[13].而 按照上述方法接种培养的脱氯菌在达到最大细胞浓 度后,可以在 24 h 内将 20 mg/L的TCE 迅速转化为 乙烯和 *cis*-DCE 等产物,因此要让纳米铁为微生物 高效持续的提供电子,必须寻找合适的接种脱氯菌 浓度,以使其脱氯速率与纳米铁释放氢气的速率相 适应.

将脱氯菌培养至最大细胞浓度后,在手套式厌 氧箱中分别将菌液稀释 100、50、25、12.5 倍至 100 mL 厌氧培养液中,注射 100 叶 溶于甲醇的 TCE 使 其在反应液中的浓度为 20 mg/L.在 22℃条件下将反 应瓶置于平板振荡器上振荡反应.同时在反应前后 分别 3 次平行移取 1.8 mL 菌液至 2 mL 的 DNA 提取 管中,平行提取混合菌液 DNA,测定与 TCE 降解有 关的 Dehalococcoides spp. 菌种的细胞浓度.

由图 1 可以看出,稀释 100、50、25、12.5 倍的 脱氯菌种分别可以在 200、128、75、73 h 的时间内 将 15.2 µmol 的 T CE 完全降解.考虑到脱氯菌还需 要较长时间将产物 *cis*-DCE 继续转化为 VC 和乙烯 等产物,实验选取稀释 25 倍的菌液与纳米铁进行耦 合脱氯实验.

以菌液稀释倍数衡量的脱氯菌量只是一个估测的数值,存在较大波动,因此实验采用实时定量 PCR 测定 Dehalococcoides spp. 菌种细胞浓度,以更加清楚的表达细胞浓度与脱氯速率之间的关系.

实验采用菌液的初始浓度为 $(5.1 \pm 1.1) \times 10^{6}$ cell/mL,按上述相应比例稀释后进行脱氯反应,反应 后 Dehalococcoides spp. 菌种细胞数目均明显上升(图

2). 其中稀释 25 倍的反应瓶由初始的(2.0±0.44) ×10⁵ cell/mL上升至(4.61±0.8)×10⁵ cell/mL, 说明 脱氯菌在降解TCE 的同时自身生长繁殖.

2.2 有无电子供体降解实验对比

合适的电子供体是该脱氯菌种生长的重要条件. 在正常情况下, 该菌种不能在无电子供体的情况 下降解TCE, 因此在验证纳米铁是否可以为脱氯菌 提供电子之前, 必须对该菌种在无电子供体时的降 解情况进行研究. 在厌氧操作箱中分别准备 2 瓶以 厌氧培养液稀释 25 倍的脱氯菌反应液(100 mL), 注 射TCE 甲醇溶液和纯TCE, 使反应液 TCE 终浓度均 为 20 mg/L, 置于平板振荡器上反应.

言Dehalococcoides spp. 菌种细胞数目均明显上升(图ublishing 由图 3(2)的对比可以看出,在有用醇作为电子

供体的情况下,脱氯菌在 96 h 的时间内几乎将 TCE 完全降解,而在无甲醇做电子供体的时候 TCE 降解 速率明显缓慢,在 190 h 时仍然有 3 µmol 的 TCE 未 被降解转化.在无甲醇的情况下脱氯菌降解 TCE 的 原因是接种菌液本身含有少量的初始电子供体,因 此即使在无甲醇的情况下依然实现了对 TCE 的降 解.但是从图 3(b) 乙烯的产量可以看出,虽然在无 电子供体时脱氯菌降解了TCE,但是在其自身的电子供体耗尽后,脱氯几乎停止,190 h 后只有 0.159 µmol 的微量乙烯生成,而在有甲醇做电子供体的情况下,脱氯产物由 *ds*-DCE 继续降解为 VC 和乙烯. 乙烯在 190 h 后达到 2.706 µmol,这表明在无电子供体时脱氯反应不能维持,更不能实现 VC 和乙烯的完全转化.

图 3 有无电子供体对脱氯的影响 Fig. 3 Effects of electron donor on dechlorination

2.3 纳米铁作为电子供体实验研究

纳米铁是一种活性很高的还原性材料,400 mg 的纳米铁与培养液接触后,会迅速与水反应生成 H₂,同时产成 OH⁻,导致溶液 pH 值升高至 9.44.

 $Fe^{0} + 2H_{2}O \rightarrow Fe^{2+} + 2OH + H_{2}^{[13]}$

纳米铁腐蚀产生的氢气可以给脱氯菌提供电 子,但同时 OH⁻ 引起的高 pH 值会抑制微生物的生 长,因此在实验中需要采用相应的缓冲溶液来调节 pH 值.在手套式厌氧操作箱内,将接种菌液、400 mg 纳米铁以及二者的结合分别投加到棕色血浆瓶中. 另投加 Hepes 缓冲溶液使其终浓度为 60 mmol/L,补 充厌氧培养液至 100 mL.分别注射相应的 TCE 甲醇 溶液或纯 TCE,以此对比研究纳米铁是否可以为脱 氯菌供电降解 TCE.

由图 4 可以看出, 在纳米铁做电子供体的情况 下, 脱氯菌可以利用纳米铁腐蚀产生的 H₂ 实现对 TCE 的降解, 二者耦合的反应速率明显高于纳米铁单 独降解TCE 时的速率, 这是纳米铁和微生物联合作用 的结果. 在理想的情况下, 纳米铁供电时除脱氯菌降 解TCE 之外, 其本身亦可以降解TCE, 因此其加合降 解速率应为二者速率之和. 实验得到的结果未达到理 想的脱氯速率, 耦合降解速率低于甲醇做电子供体时 时,其脱氯的主要产物为无毒的乙炔、乙烯以及微量 的 *as*-DCE 和 VC 等,而脱氯菌单独降解的 TCE 的主 产物为 VC、乙烯及少量的 *cis*-DCE,降解过程并不彻 底.另外 VC 到乙烯的转化是脱氯菌脱氯的限速步 骤,需要较长的时间才可以达到完全脱氯,因此脱氯 终产物的不同造成脱氯速率的明显差异.

的降解速率,其原因是脱氯菌与纳米铁耦合降解TCE 2.4 脱氯特征产物对照

在甲醇做电子供体时, 微生物降解 TCE 的产物 为乙烯和 VC 等产物, 而在无甲醇做电子供体时, 脱 氯反应几乎终止于 *cis*-DCE, 仅有微量的 VC 和乙烯 生成. 因此对比乙烯的产量不仅可以表明脱氯菌是 否利用了纳米铁产生的活性氢, 而且可以从侧面反 应脱氯菌在与纳米铁接触后的活性.

由图 5(a)可以看出,脱氯菌与纳米铁耦合时产 生的乙烯量明显高于甲醇供电时乙烯的产生量,其 原因是纳米铁降解TCE 时同样有产物乙烯生成.为 便于对比脱氯菌在甲醇供电和纳米铁供电情况下的 乙烯产量的差异,图 5(a)中采用虚线粗略指示耦合 反应中由脱氯菌降解TCE 产生的乙烯量.由乙烯产 量对比可以看出,在纳米铁作为电子供体时,脱氯菌 可以将TCE 降解为乙烯,但 190 h时乙烯的产量为 1.187 Hmol,明显低于甲醇做电子供体时乙烯的产量为 1.187 Hmol,明显低于甲醇做电子供体时乙烯的产量 2.706 Hmol,这从侧面表明纳米铁对脱氯菌可能具有 一定的毒性效应,使其降解活性受到抑制.相对于土 壤和地下水中的产甲烷菌等其他菌种,脱氯菌 (*Dehalococcoides* spp.)较为敏感^[23],这是纳米铁应用 于实际地下水修复过程中需要考虑的一个因素.

由图 5(b) 乙炔的产量看出, 脱氯菌与纳米铁耦 合时, 反应 190 h 后乙炔的产量为 0.109 µmol, 相对 低于与纳米铁单独降解TCE 时的产量 0.161 µmol, 这表明此时纳米铁脱氯活性同样受到了微生物的竞 争抑制. 其原因是微生物在没有电子供体的情况下, 竞争利用了纳米铁与水反应产生的电子生成乙烯等 产物. 因此导致乙炔的生成量降低.

综合上述实验结果可知,脱氯菌可以利用纳米 铁腐蚀产生的活性氢作为电子供体,将TCE 还原为 cis-DCE 和 VC,并最终完全脱氯为无毒产物乙烯.这 给土壤和地下水的修复提供了新的途径.在高浓度 非水相有机污染源(DNAPL)修复过程中,纳米铁因 受移动性差的限制只能修复局部区域,而脱氯菌也 受到高浓度污染物的毒性效应以及修复周期的限 制.如果将纳米铁直接注射到 DNAPL 源核心区域进 行迅速修复,而脱氯菌在 DNAPL 浓度降低后利用纳 米铁提供的氢气做电子供体将残余在孔隙中的污染 物进一步修复,则可以达到短期内迅速、彻底修复有 机氯污染源的目标,这对地下水修复具有重要的实 际意义.

图 5 TCE 降解产物对比 Fig. 5 Comparison of TCE degradation endproducts

3 结论

(1) 经批实验研究得出稀释 25 倍后的菌液 [(2.0±0.44)×10⁵ cell/mL]可以将 TCE 转化为 *as*-DCE,并在后续反应中将其转化为乙烯和 VC 等产 物,其脱氯速率可以与 4 g/L纳米铁供电的速率相 适应.

(2) 在甲醇做电子供体时, TCE 在 96 h 后被降 解, 其中 190 h 时乙烯的产量为 2. 706 µmol, 但在无 甲醇做电子供体时 TCE 未被完全降解, 仅有 0. 159 Hmol 乙烯产生, 这表明在无外来电子供体的情况下, 脱氯菌虽然可以利用投加菌液中自身含有的微量电子供体将 TCE 转化为 *cis*-DCE, 但其不能持续的实现 *cis*-DCE 向 VC 和乙烯的转化.

(3)纳米铁投加量为4g/L时,稀释25倍的脱氯 菌可以有效利用纳米铁提供的活性氢,并且其耦合 的脱氯速率高于纳米铁单独降解时的速率.从乙烯 的产量分析中得出,190h时由脱氯菌产生的乙烯量 为1.187 4mol,明显低于甲醇做电子供体时乙烯的 产量2.706 4mol,这表明脱氯菌(Dehalococcoides

1795

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

spp.)相对较为敏感,纳米铁可能对其有一定的毒性 效应,这是纳米铁应用于实际地下水修复过程中需 要考虑的一个因素.

参考文献:

- McCarty P L. Breathing with chlorinat ed solvents[J]. Science, 1997, 276(6):1521-1522.
- Mohn W W, Tiedje J M. Microbial reductive dehalogenation [J]. Microbiol Rev, 1992, 56(3):482-507.
- [3] Maymo-Gatell X, Chien Y, Zinder S H, et al. Isolation of a bacterium that reductively dechlorinates tetrachlorothene to ethene [J]. Science, 1997, 276(6): 1568-1571.
- [4] Daprato R C, Il-ffler F E, Hughes J B, et al. Comparative analysis of three tetrachloroethene to ethene halorespiring consortia suggests functional redundancy[J]. Environ Sci Technol, 2007, 41(7): 2261-2269.
- [5] He J, Sung Y, L^Lffler F E, et al. Isolation and characterization of Dehalococcoides sp. strain FL2, a trichbroethene(TCE)-and 1, 2dichloroethene respiring anaerobe [J]. Environ Microbiol, 2005, 7 (9): 1442-1450.
- [6] Fennell D E, Nijenhuis I, Zinder S H, et al. Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants [J]. Environ Sci Technol, 2004, 38(7): 2075-2081.
- [7] Carr C S, Hughes J B. Enrichment of high-rate PCE dechlorination and comparative study of lactate, methanol and hydrogen as electron donors to sustain activity[J]. Environ Sci Technol, 1998, 32 (12): 1871-1824.
- [8] Fennell D E, Gossett J M, Zinder S H, et al. Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene [J]. Environ Sci Technol, 1997, 31(3): 918-926.
- [9] Deweerd K A, Concannon F, Suflita J M. Relationship between hydrogen consumption, dehalogenation and the reduction of sulfur oxyanions by *Desulfomonile tiedjei* [J]. Appl Environ Microbiol, 1991, 57(7): 1929-1934.
- [10] Elliott D W, Zhang W. Field assessment of nanoscale bimetallic particles for groundwater treatment [J]. Environ Sci Technol, 2001, 395(24): 4922-4926.
- [11] Saleh N, Kim H J, Lowry G V, *et al.* Ionic strength and composition affect the mobility of surface modified Fe0 nanoparticles in watersaturated sand columns[J]. Environ SciTechnol, 2008, 42(9): 3349-3355.
- [12] Phenrat T, Saleh N, Lowry G V, et al. Stabilization of aqueous nanoscale zero valent iron dispersions by anionic polyelectrolytes:

adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation [J]. J Nanopart Res, 2008, 10(5): 795-814.

- [13] Liu Y, Majetich S A, Lowry G V, et al. TCE dechlorination rates, Pathways and Efficiency of nanoscale iron particles with different properties[J]. Environ Sci Technol, 2005, 39(5): 1338-1345.
- [14] Liu Y, Lowry G V. Effect of Particle Age (Fe⁰ ontent) and Solution pH on NZVI Reactivity: H₂ Evolution and TCE Dechlorination[J]. Environ Sci Technol, 2006, 40(19): 6085-6090.
- [15] Zheng D, Carr C S, Hughes J B. Influence of hydraulic retention time on extent of PCE dechlorination and preliminary characterization of the enrichment culture[J]. Bioremed J, 2001, 5(2): 159-168.
- [16] Silva M L B Da, Hughes J B, Alvarez P J, et al. Comparison of bioaugmentation and biostimulation for the enhancement of dense nonaqueous phase liquid source zone[J]. Bioremed J, 2006, 78(13): 2456-2465.
- [17] Adamson DT, McDade J, Hughes J B. Inoculation of a DNAPL source zone to initiate reductive dechlorination of PCE [J]. Environ Sci Technol, 2003, 37 (11): 2525-2533.
- [18] Yang Y, Mccarty P L. Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture [J]. Environ Sci Technol, 1998, 32(22): 359+3597.
- [19] He J, Ritalahti K M, Il-ffler F E, *et al.* Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a *Dehalococcoides* species [J]. Appl Environ Microbiol, 2003, 69(2): 996-1003.
- [20] I^Lffler F E, Sun Q, Li J R. 16S rRNA gene based detection of tetrachloroethene dechlorinating *Desulfuromonas* and *Dehalococcoides* species[J]. Appl Environ Microbiol, 2000, 66(4): 1369-1374.
- [21] Seshadri R, Adrian L, Zinder S H. Genome sequence of the PCEdechlorinating bacterium *Dehalococcoides* ethenogenes [J]. Science, 2005, 307(7):105-108.
- [22] Kube M, Beck A, Zinder S H. Genome sequence of the chlorinated compound respiring bacterium *Dehalococcoides* species strain CBDB1
 [J]. Nature Biotechnol, 2005, 23(10): 1269-1273.
- [23] Ritalahti K M, Amos B K, Il-ffler F E, et al. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple *Dehalococoides* strains [J]. Appl Environ Microbiol, 2006, 72(4): 2765-2774.
- [24] Wu W, Nye J, Hickey R F, et al. Anaerobic dechlorination of trichloroethylene (TCE) to ethylene using complex organic materials [J]. Water Res, 1998, 32(5): 1445-1454.
- [25] Amos B K, Hughes J B, L^Lffler F E, *et al.* Effect of Nonionic Surfactant Tween 80 on Microbial Reductive Dechlorination of Chlorethenes[J]. Environ Sci Technol, 2007, **41**(5): 1710-1716.