色谱光谱法测试超临界压力下穿心莲内酯的结晶规律

张文成^{1,2},张兴元²,潘见¹

1. 合肥工业大学农产品生物化工教育部工程研究中心, 安徽 合肥 230009

2 中国科学技术大学高分子科学与工程系, 安徽 合肥 230026

摘 要 以 30% 和 95% 的穿心莲内酯为实验原料,采用超临界 CO₂ 萃取结晶法考察了不同压力下穿心莲内 酯在结晶板上的分布规律,同时也考察了晶体的晶型和红外光谱的变化规律。研究证实:高效液相色谱分 析,不同压力下穿心莲内酯在结晶板上都按纯度梯度结晶分布;X 射线衍射分析,压力越高,晶体越趋于向 比较单一的晶面上择优生长;红外光谱分析,压力的变化,并没有引起穿心莲内酯化学结构的改变。

关键词 超临界 CO₂; 萃取结晶; 穿心莲内酯; 高效液相色谱; X 射线衍射; 红外光谱 中图分类号: T Q02; O79 文献标识码: A 文章编号: 1000 0593(2007) 08 1657-04

引 言

超临界流体萃取 (supercritical fluid extraction, SCFE) 作为高新 绿色"加工技术在医药、化工、食品和生物等领域 已有 20 多年的历史^[1,2],具有高效性、可调性等优点已用于 开发多种天然产物活性成分^[3];但在分离纯化上,SCFE 技 术还存在一定的局限性^[4],如结晶性组分易堵塞循环管道、 单一成分获得困难等等。本文作者曾采用过超临界流体萃取 结晶(supercritical fluid extraction and crystallization, SFEC) 新方法^[5]对天然产物进行过分离纯化方面的研究。

所谓 SFEC,是指在一定压力和温度下,以 SCF 作为萃 取剂和结晶溶剂,在具有特殊结构结晶器中,SCF 与多组分 混溶,发生溶解、萃取传质,与结晶器表面接触,发生吸附、 涨落、干扰挠动而结晶析出。除本单位外,国内外关于SFEC 方面的研究尚未报道。因 SFEC 涉及压力、温度、时间、流量 工艺参数及结晶器等多种影响因素,鉴于压力对萃取结晶影 响最为显著,为此,本文选择具有较高药用价值且为脂溶性 有机化合物代表的穿心莲内酯为研究对象¹⁶,重点考察了超 临界CO₂ 萃取结晶压力对穿心莲内酯晶体的纯度、晶型和红 外光谱的作用规律。

1 实验部分

1.1 实验材料

纯度分别为 30% 和 95% 穿心莲内酯, 合肥拓峰生物工 程有限责任公司产; 穿心莲内酯标准品, 购于中国药品生物 制品检定所;二氧化碳(99.8%),食品级,合肥六方特种气体厂提供;乙酸乙酯(分析纯)和甲醇(色谱纯)都由上海试剂 厂生产。

1.2 设备与仪器

40 M Pa 超临界二氧化碳萃取结晶装置(1 6 L 萃取结晶 釜,高径比 8:1)(合肥工业大学生物机电工程研究所); H PLC 仪(配有 2487 紫外双光束检测器)(美国 Waters 公 司); 18 kW 转靶 X RD 仪(日本玛珂公司); 5700 FTIR 仪(美 国 ThermoNicolet); 电子天平(上海分析仪器厂)。

13 实验方法

选择 30% 穿心莲内酯为原料,考察在不同压力下穿心莲 内酯的纯度变化或分布规律;选择 95% 的穿心莲内酯考察在 不同压力下晶体晶型和红外光谱的变化规律。

测试条件:

HPLC: Waters Symmetryshield 5µm C₁₈反相分析柱(∅ 3 9 mm× 150 mm),流动相甲醇-水= 80% - 20% (𝒫),流 速 1.00 mL・min⁻¹,检测波长 224 nm^[7]。

XRD: Cu 靶 Kα 线, 管压 45 kV, 电流 40 mA, 测角仪精 度为±0.02, 扫描角度为 0~ 60^[8]。

FTIR: 光谱分辨率 4 cm⁻¹, 测量范围 4 000~400 cm⁻¹, 扫描信号累加 16 次^[9]。

2 结果与讨论

21 HPLC 测试结果

在其他实验条件,如温度为 55 °C,时间为 60 min,流量 为 15 L•min⁻¹保持不变条件下,萃取结晶压力分别选择了

作者简介:张文成, 1973 年生, 合肥工业大学副研究员 * 通讯联系人 e-mail: zwc1012@163.com © 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. h

收稿日期: 2006 03-13, 修订日期: 2006 09 23

基金项目:国家自然科学基金项目(29976008)和教育部科技创新工程重大项目培育基金项目(704027)资助

a: 9 MPa; b: 12 MPa; c: 15 MPa; d: 18 MPa; e: 21 MPa

9,12,15,18 和 20 M Pa 进行实验。实验结束后,将结晶板 由下至上平均分为 5 段,进行取样检测,结果如图 1 所示。

从图 1 中变化曲线可以看出,在同一结晶板上,当压力 相同时,由下到上所得晶体的纯度呈梯度上升,这主要因穿 心莲内酯与其他杂质在超临界 CO₂ 中因重力、分子引力及结 晶板表面吸附力的不同,竞争性结晶产生不同分布。而压力 越高,位于结晶板最底部的晶体纯度越低,这进一步证实了 在超临界状态下,优先萃取穿心莲内酯,并在上部形成吸附 结晶,而使其他杂质也随压力的升高开始在结晶器的底部沉 析出来。

2 2 晶型测试结果

为了考察超临界 CO₂ 萃取结晶穿心莲内酯过程的晶型 变化规律,特选择 95% 穿心莲内酯为原料,试验工艺参数选 择: 在萃取温度 55 ℃,萃取时间 45 min, CO₂ 流量 15 L• min⁻¹,乙酸乙酯为夹带剂条件下,压力分别为 9, 12, 15, 18和 21 MPa 时所得晶体的 XRD 曲线,如图 2 所示。

Fig 2 X ray diffraction diagrams of andrographolide at different pressures

(a): 9 MPa; (b): 12 MPa; (c): 15 MPa; (d): 18 MPa; (e): 21 MPa © 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved.

http://www.cnki.net

图 2 中曲线(a) 上强度较高的晶面有 100, 200, 211, 300, 310, 320 和 420, 曲线(b) 上强度较高的晶面有 100, 200, 211, 300 和 310, 曲线(c) 上的强度较高的晶面有 211, 310 和 420, 曲线(d) 上强度较高的晶面有 211, 310 和 420, 曲线(e) 上强度较高的晶面有 100, 211 和 310。当压力较低 时,衍射峰上强度较高的晶面比较多,随着压力的增加,强 度较高的晶面减少;曲线(e) 与(a),(b),(c),(d)相比,只 有比较单一的 211 晶面吸收强度较为突出,这说明随着压力 的增加,所得晶体更趋于比较单一的晶面上择优生长。

2.3 结构确证

因 IR 光谱能提供较详细的结构变化信息,为此本文采用 IR 法确证穿心莲内酯在结晶过程中压力的变化是否引起 了晶体分子结构的改变。图 3 中显示了在操作压力分别为 9,

Fig 3 IR spectrum of andrographolide crystal with different pressure

SS: Standard sample; a: 9 MPa; b: 12 MPa; c: 15 MPa; d: 18 MPa 12, 15 和 18 MPa 时所得穿心莲内酯晶体的 IR 谱图以及标 准对照品的 IR 谱图。

解析穿心莲内酯标准品的 IR 谱图 SS 曲线知:特征谱带 区(4000~1333 cm⁻¹) 依次有以下主要吸收峰:3420~ 300 cm⁻¹为宽而强的 V_{-OH} ; 2830~2810 cm⁻¹为几个吸收 峰;1730 cm⁻¹为 $V_{c=0}$ 强峰;1670 cm⁻¹为 $V_{c=c}$ 峰;1370 cm⁻¹为 δ_{-CH_3} 的吸收峰。图中羟基峰3420 cm⁻¹为一尖峰, 与3300 cm⁻¹较宽峰相叠合,系不同缔合程度的羟基。一般 认为3420 cm⁻¹是内酯环上的羟基吸收峰。穿心莲内酯分子 中的叔醇基,也可以从 V_{c-OH} 1110 cm⁻¹处证实;仲醇基可从 V_{c-OH} 1030 cm⁻¹及其 δ_{c-OH} 1420与1290 cm⁻¹吸收峰找出依 据。把不同萃取结晶压力条件下的曲线*a*,*b*,*c*,*d*与SS 对 照,显然,不同压力条件下超临界 CO₂萃取结晶获得穿心莲 内酯晶体的 IR 谱图与标准品的完全吻合,可见结晶压力的 变化不会改变穿心莲内酯晶体的分子结构^[10,11]。

本文的研究成果有一定的实用价值。近年来,有关色谱 光谱法的应用也有一些报道,例如文献[12]。

3 结 论

(1)利用超临界 CO₂ 萃取结晶技术,可使穿心莲内酯与结晶性杂质组分在结晶板上实现梯度结晶分离;且在结晶板的上部可以得到较高纯度的穿心莲内酯。

(2) XRD 结果表明,随着压力的增加,晶体能在单一的 晶面上择优生长,证实较高压力下超临界结晶产物的晶型单 一性。

(3) IR 结果表明, 超临界流体压力变化不会改变穿心莲 内酯分子结构。

参考文献

- [1] Russell T, Fariba D, Nei R. Journal of Supercritical Fluid, 2001, 21: 159.
- [2] Yoshikawa Syouichirou, Smith Jr Richard L., Inomata Hiroshi, et al. Journal of Supercritical Fluids, 2005, 36: 70.
- [3] Ota Masaki, Abe Yuki, Watanabe Masaru, et al. Fluid Phase Equilibria, 2005, 228 229: 553.
- [4] ZHANG Werr cheng, et al(张文成, 等). Natural Product Research and Development(天然产物研究与开发)2004, 16(3): 241.
- [5] PAN Jian, ZHU Jian zhong(潘 见,朱剑中). Separation Method for Material Composition by Supercritical Fluid Crystallization(物质成分的超临界流体结晶分离方法). Chinese Patent(中国发明专利): 1220906A. 1999-06-30.
- [6] Cheung H Y, Cheung C S, Kong C K. Journal of Chromatography A, 2001, 930: 171.
- [7] HU Xue qiao, et al(胡学桥, 等). Journal of Hefei University of Technology(合肥工业大学学报・自然科学版), 2001, 24(6): 1083.
- [8] WEN Chao, LI Xun, SUN Deyu, et al(文 潮,李 迅, 孙德玉,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2005, 25(1): 54.
- [9] GUO Ping, YUAN Yarli, XIONG Ping(郭 萍, 袁亚莉, 熊 平). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2004, 24 (10): 1210.
- [10] SHI Jiambo, LIAO Chumyang, WANG Yawei(史建波,廖春阳,王亚伟). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2006, 26(2): 336.
- [11] ZHANG Hua, WANG Ying feng, SHI Yar zhi, et al(张 华, 王英锋, 施燕支, 等). Spectroscopy and Spectral Analysis(光谱学与光谱 分析), 2007, 27(2): 386.
- [12] JIANG Ze hui, HUANG Arrmin, FEI Berr hua, et al(江泽慧,黄安民,费本华,等). Spectroscopy and Spectral Analysis(光谱学与光谱 分析), 2006, 26(7): 1230.

Test of the Effect of Different Supercritical Pressure on Andrographolide Crystallization with Chromatography and Spectrum

ZHANG Wen cheng^{1, 2}, ZHANG Xing yuan², PAN Jian¹

- Engineering Research Center of Biσ Process of Ministry of Education, Hefei University of Technology, Hefei 230009, China
- 2. Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China

Abstract With the new technique of supercritical carbon dioxide extraction and crystallization, the experimental materials of 30% and 95% andrographolide were used to investigate the effect of different pressure on crystal distribution on crystallization board, what's more, the effect of X-ray diffraction and infrared ray spectrum on crystal was tested. The results showed that arr drographolide was crystallized on crystallization board in purity gradient with high performance liquid chromatography; the highr er the pressure, the higher the crystallization ratio. In addition, the crystal was inclining to directional growth; the chemical structure of andrographolide was not changed with the variety of pressure with infrared ray spectrum analysis.

Keywords Supercritical CO₂; Extraction and crystallization; Andrographolide; High performance liquid chromatography; X ray diffraction; Infrared ray spectrum

(Received Mar. 13, 2006; accepted Sep. 23, 2006)