DOI: 10. 3969/j. issn. 2095-1035. 2011. 03. 0004

熔融玻璃片 波长色散 X 射线荧光光谱法 测定铁矿石中全铁及其它多种 元素的分析进展

罗学辉 张勇 艾晓军 李玄辉 陈占生

(中国人民武装警察部队黄金地质研究所,河北廊坊 065000)

摘 要 综述了近年来国内应用熔融玻璃片-波长色散 X 射线荧光光谱法测定铁矿石中全铁及其它成 分这一分析技术的研究和进展,重点对标样的选择与制备、熔剂组成对制样效果的影响、氧化剂和脱模 剂的选择、烧失量的影响进行了总结。并对熔融玻璃片-波长色散 X 射线荧光光谱法测定铁矿石中全铁 及其它元素的发展方向提出了建议和展望。

关键词 熔融玻璃片; X 射线荧光光谱仪; 铁矿石; 进展 中图分类号: O 657. 34; TH 744 16 文献标识码: A 文章编号: 2095-1035(2011)03-0023-04

Progress on Determination of TFe and Other Elements in Iron Ores by Fused Glass-Wavelength Dispersive X-ray Fluorescence Spectrometry

LUO Xuehui, ZHANG Yong, AI Xiaojun, LI Xuanhui, CHEN Zhansheng (Gold Geological Institute of CAPF, Lang Fang, Hebei 065000, China)

Abstract In the paper, the research and recent progress on determination of T Fe and other elements in iron ores by fused glass-wavelength dispersive X-ray fluorescence spectrometry were reviewed. The selection and preparation of standard samples, the effect of flux composition on sample preparation, the choice of ox_i dants and release agent, the impact of loss on ignition were summarized. Some suggestions and prospect for this method were also given.

Keywords fused glass; x-ray fluorescence spectrometer; iron ores; progress

1 引言

目前,测定铁矿石中全铁标准方法有有汞 K₂Cr₂O₇滴定法^[1]和无汞TiCl+K₂Cr₂O₇滴定 法^[2]。有汞法需加入5%氯化汞溶液10mL,生产 分析汞的排放量是大大超过国家环境部门规定的允 许排放量,造成严重的环境污染,而且有损操作人员 人身健康^[3]。而无汞法操作繁锁,所配辅助溶液种 类多,且不易操作易出现过失^[2]。早在 20 世纪 60 年代,X 射线荧光光谱(XRF)分析作为常规分析重 要手段以来,国内许多学者和分析工作人员在借鉴 和吸收国外同行先进经验的同时,不断努力在利用 X 射线荧光光谱法测定铁矿石中全铁方面做了大量 工作。尤其是近二十年来随着计算机、分析仪器技 术的迅速发展及校正干扰元素方法不断丰富,XRF 测定铁矿石中全铁含量已成为一个成熟的方法^[45],

<mark>作者简介:罗学辉,男,工程师,从事 x 射线荧光光谱分析工作。ᠬail: ls19760811@ sohu. com</mark> © 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

收稿日期: 2011-06-15 修回日期: 2011-07-05

广泛用于进出口检验^[6]、炼钢^[7-10]、地质^[1+12]等领 域。除测定全铁含量外,同时还能测定SiO₂、 Al₂O₃、MgO、CaO、TiO₂、P₂O₅等含量^[13],且测定速 度快,分析元素浓度范围宽,准确度高,完全满足日 常分析的要求。总结了近年来的研究报道,对这一 分析技术的研究和进展作了综合的介绍。

2 实验方法及熔融目的

2.1 实验方法

准确称取试样,加入熔剂、三氧化二钴及氧化剂 和脱模剂于铂 金坩埚中,置于自动熔样机中熔融, 取出冷却,制成熔融玻璃片^[14]。在波长色散 X 射线 荧光光谱仪上测定。(分析元素测量条件略)

2.2 熔融目的

采用了硼酸盐高温熔融不但可以有效消除样品的颗粒度效应、矿物效应和不均匀性,同时也很好地降低样品元素间的吸收和增强效应,提高了分析的精确度和准确度^[15]。

- 3 结果与讨论
- 3.1 标样的选择与制备

标准样品的选择常用的三种方法(1)选用标准 参考物质:目前我国铁矿石国家标准物质的研制工 作进展迅速^[16-18],但是品种与含量不太合理,烧结 矿、磁铁精矿、赤铁矿、球团矿、贫磁铁矿、贫铁矿、褐 铁矿、磁铁矿标样数量较多、缺少菱铁矿、钛铁矿、铬 铁矿、钒钛磁铁矿标准系列[18]。 乌静[19] 等在选用标 准物质的同时又采用这些标准物质以一定的配比合 成新的标准物质相结合的方法解决铁矾土标样少的 问题。(2)选用市售的高纯或光谱纯化学试剂与标 准样品相结合:由于铬铁矿标样较少,李国会^[20]、谷 松海^[21]选用光谱纯试剂 Cr₂O₃. 与选用的铬铁矿标 样按一定比例混合制备标样,使各元素形成既有一 定的含量范围又有适当梯度的标准系列测定国标样 与标准值符合较好。由于钛铁矿标准物质较少, 袁 家义^[22]选用光谱纯试剂 TiO₂ 与选用的国家标准样 品按一定比例混合制成人工标准样品很好地测定了 钛铁矿中主次成分。人工配制标样所用试剂需要加 热处理. 文献[14]列出了一些常用的标准熔块化学 试剂及加热处理方法。(3)选用市售的高纯或光谱 纯化学试剂用熔融法合成标准样: 吴小红等^[23] 引进 表观浓度概念使用人工合成方法配制单元素氧化物 或多元素氧化物合成的标准样品测定铁矿石主次成 分,结果非常满意。选择的标准样品与待分析样品

要相似的类型(即两者的样品成分、矿物结构、颗粒 度一致)。

3 2 熔剂组成对制样效果的影响

X 射线荧光光谱法测定铁矿石熔剂通常使用 锂、钠的硼酸盐如 Na2B4O7、Li2B4O7、LiBO2、 Li2CO3, Li2 B4O7 等, 陈贺海等^[24] 详细地论述了熔 片预处理技术常用试剂性质。蒋薇^{25]}选用 Na2B4O7、Li2B4O7和LiBO2分别进行试验,试验结 果表明用 Li2B4O7 熔成样片均匀性好. 样片易保存。 因 Na2B407 易潮解, 样片不易保存, 使用它时就不 能测定试样中的钠。若仅用 LiBO2 不易制成均匀 试样、表面有白斑。早在 90 年代初国外^[26-27] 有人 研究认为Li₂B₄O₇和LiBO₂在高温下是一种有效 的熔剂,其优点是熔点低、流动性好、便干浇铸。近 年来国内选用 Li2B4O7 和 LiBO2 作为熔剂的文章 多有报道,其比例有12:22,67:33等。谷松海[21] 用市售 Li2B4 O7: LiBO2(12: 22) 熔剂, 选择 1: 50 稀释比制成高质量的玻璃样品. 又能使低含量分析 元素有一定的 X 射线强度。对于难熔铁矿物,李小 莉^[28]选择Li₂B₄O₇:LiBO₂(1:1)组成熔剂对钛铁 矿溶解度最高,1:20稀释比流动性较好,易于浇 铸。袁家义^[22]等为了熔解钛铁矿中酸性熔融体的 不溶物选用 Li₂B₄O₇ 和 Li₂CO₃(7:1) 混合熔剂,提 高了制样的重现性。许鸿英[29]等认为炼铁生产中 所用铁矿石产地多、矿源杂、物料组成或成分变化较 大,采用 Li2B4O7 和 Li2CO3(6:1) 混合熔剂, 对不 同产地的铁矿石进行测定,结果与化学分析方法吻 合。为了能让溶液的流动性更好,李小莉^[11]、罗学 辉^[30]、潘建华^[31] 采用了 Li₂ B₄O₇: LiBO₂: LiF= 4.5:1.0:05复合试剂熔解铁矿样,取得满意的 分析效果。肖洪训^[32]等对常见6种铁矿石实验,确 定了熔融容易顺序为:磁铁矿、精矿>菱铁矿>球团 矿、焙砂矿> 赤铁矿。这为从事铁矿石分析工作者 在选择熔剂时提供了一定依据。

3 3 内标元素的选择

文献[13] 叙述了内标元素的选择原则及内标法 的优点,肖洪训^[32]、周公度^[33] 等详述了钴作为内标 的理论基础,熔融制法或粉末压片制法利用 X 射线 荧光光谱法测定铁矿石中铁含量时加入 Co₂O₃ 作 内标,国外上世纪六十年代就有报道^[34]。消除钴粉 固有的物理化学性能在熔融过程中对玻璃片地影 响^[35]。普旭日等^[36]采用将高纯 Co₂O₃ 和混合熔剂按 1:9 的质量比于铂-金合金坩埚中混匀,经 1050 ℃ 熔融,制成均匀的钴玻璃片,再用振动磨将其研磨至

34 氧化剂的选择

为了使熔融期间铂黄合金坩埚内保持氧化气 氛,并防止某些元素被还原以保护铂黄合金坩埚可 在熔剂中加入氧化剂。陈贺海等^[24]列出了常用的 氧化剂性质,常用的氧化剂有 NH4 NO3、NaNO3、 LiNO3。国外学者认为 LiNO3 在多类型样品制样 中是一种良好的氧化剂,即不引进阳离子杂质又能 对铁含量高的样品起到良好的氧化效率,同时使称 量造成的误差降到最低。蒋薇^[25]通过实验发现, NH4NO3 作氧化剂,由于 NH4NO3 的沸点较低仅 210 °C,在低温就分解效果不理想,而且吸湿严重 使操作不便。NaNO3 中含有钠,使用它时就不能 测定试样中的钠,因此使用 LiNO3 作为氧化剂。 普旭日等^[36]加入 LiNO3 作氧化剂的基础上,选择 合适的温度进行预氧化和熔融,解决了硫元素在制 样过程中容易挥发的问题。

35 脱模剂的选择

为了有助于脱模,也有助于坩埚中熔融物全部 倒入模具中。浇铸前,熔融体必须预先加入脱模剂。 常用的脱模剂有 NH4I、LiBr 等,LiBr 中 Br 元素对 A1元素的测定有影响,王一凌等^[37]通过实验证明, 由于 NH4I 为受热分解挥发类物质,加入 NH4I 的 多少对测量结果无显著差异。潘建华^[31]认为脱模 剂 LiBr 的加入使 BrLa 干扰 AlKa 的测定,将 Al 的 背景扣在-1.057 并控制 LiBr 的加入量一致,以消 除干扰。袁家义等^[22]认为 BrLa 对 AlKa 的重叠干 扰通过测量 BrKa,在回归计算中利用强度法扣除。 程进^[38] 采用数学校正方法 AI 方程对铝元素进行强 度模式校正。

36 烧失量的影响

烧失量是指经灼烧矿样中还原组分氧化和使吸 附水、结晶水、有机质、碳酸盐等组分在高温下挥发 的总量。灼烧的目的是保证样品在熔融过程中不再 发生重量变化,使熔片中的样品量一致。对于灼烧 减量较高的试样在熔融前一定要灼烧。丁仕兵等^[8] 通过实验发现,对于结晶水含量大的澳大利亚 ROBE RIVER 矿样品如熔融前不灼烧,得不到正确 结果。常见铁矾土试样的灼烧减量较高,乌静^[9]选 择一个灼烧减量为9.63%的试样进行实验,发现灼 烧减量对高含量成分的影响较大,必须进行灼烧减 量校正。李韶梅^[39]加入钴作 TFe 的内标进行基体 和试样烧失量的校正,效果很好。杨新能等^[40]选用 不同种类的铁矿石进行试验,结果表明,褐铁矿灼烧 减量较大,并采用两种方法进行校正取得满意结果。

4 基体效应及谱线重叠干扰的校正

样品虽经熔剂熔融后, 消除了颗粒度和不均匀 性, 减小了基体效应, 但基体效应仍然存在, 基体效 应是 XRF 分析中普遍存在的问题, 是元素分析的主 要误差来源之一。现在 X 荧光光谱仪生产厂家都 研发了强大的数学校正软件, 应用理论 α 系数和基 本系数法或理论 α 系数和经验系数法相结合进行校 正基体效应, 应用理论 α 系数、经验系数法对各组分 之间谱线重叠干扰进行校正是本法常用的。边立槐 等^[41]在分析铁矿石中全铁成分时, 发现较高含量的 钡对测定产生严重的干扰, 为此在制作校准曲线时 加入钡元素的干扰校正取得了满意的结果。

5 检出限

在一定的分析灵敏度条件和计数时间内,与背 景计数率标准偏差相当的分析线净强度所对应的分 析元素含量,即为此元素的检出限 Lo。公式为 $L_{D} = \frac{3\sqrt{2}}{m} \sqrt{\frac{I_{b}}{t}}$ 式中:m为1 $\mu_{g/g}$ 含量的计算率; I b 为背景计算率; t 为峰值和背景的总测量时间(s)。 一般情况下,用该公式计算出来的是被分析元素的 理论检出限,由于 I_b 和 m都与样品的基体有关,即 样品的基体不同, 被测元素检出限也不同, 而且 m 还会受到谱线重叠干扰的影响。实际分析中被测元 素的检出限要比公式计算值要高。目前较为常见的 两种计算方式为: (1) 欧阳伦熬^[42] 为了克服上述缺 点,选用含量较低的钒钛磁铁矿标样,重复测量 12 次,计算铁矿样品中各元素对应的标准偏差(s),以 3s 作为方法的检出限,用此法计算出来的元素检出 限与实际能报出的结果基本一致。(2)李小莉^[11]采 用上述公式计算 18 个标样中各组分的检出限, 然后 取其平均值作为方法的检出限。梁国立等[43] 对有 关 X 射线荧光光谱分析低含量元素的检出限问题 进行了多方面的探讨很值得借鉴。

6 建议

虽然 XRF 测定铁矿石中全铁含量已成为一个 成熟的方法,但是我国仍没有将其列入国家标准方 法^[13],还存在以下几点需要改进的地方。

(1)目前我国用于作为铁矿石量值测量所需的标准物质尚不配套,在没有相近的国家标准物质或者是行业标准物质时,采用高纯试剂配制,制作出的

标准曲线线性较好,但由于基体与实际样品的差别 较大,有些铁矿类型测试结果不太理想,文献[44-45] 也提出了工作曲线校正引起的不确定度对总不 确定度贡献最大,其次为标准样品引起的不确定度。 建议标准样品研制单位加大对不同类型铁矿石标样 的研制力度。或者是分析人员在制作标准曲线时最 好采用生产原料进行标准配制。

(2) 在日常生产中发现. 铁矿样烧失量小时其分 析结果与化学法分析结果基本一致,烧失量大时分 析结果与化学分析结果比较不符合《规范》^{46]}的要 求。这和梁鹏山等[47]提出的观点一致。尽管许多 文献对烧失量的影响提出了不同的解决方法,但是 目前为止,还没有一种有效的统一方法。这仍将是 今后努力的重点。

参考文献

- [1] 岩石矿物分析编写组. 岩石矿物分析(第一分册)[M]. 北京:北京地质出版社,1991:204-208.
- [2] 中华人民共和国国家质量监督检验检疫总局 中国国家 标准化管理委员会. GB/ T6730. 5-2007 三氯化钛一重铬 酸钾容量法测定全铁量[S].北京:中国标准出版社, 2008.
- [3] 武汉大学. 分析化学实验[M]. 北京: 高等教育出版社, 1994:155-160.
- [4] 中华人民共和国国家质量监督检验检疫总局. SN / T 0832-1999,进出口铁矿石中铁、硅、钙、锰、铝、钛、镁和磷 的测定 波长色散 X 射线荧光光谱法[S]. 北京: 中国标 准出版社,2000.
- [5] International Organization for Standardization. ISO9516 1: 2003, Iron ores-Determination of various elements by X-ray fluorescence spectrometry-Part1: Comprehensive procedure[S]. Global Engineering Documents, 2003.
- [6] 江海涛, 高祥琪, X-射线荧光光谱法在进口铁矿全分析 中的应用[J].分析实验室, 1991, 10(5): 39-41.
- [7] 蒲雪芬. 分析铁矿石中 TFe、SiO₂、P、S、Al₂O₃、MgO、 CaO、 $TiO_2 - X$ 射线荧光光谱熔片法[J]. 重钢技术, 2007, 50(1): 31-37.
- [8] 丁仕兵,曲晓霞,岳春雷. X-射线荧光光谱法测定铁矿石 中全铁[J]. 冶金分析, 2006, 26(3): 96-97.
- [9] 崔黎黎. X-射线荧光光谱法测定铁矿石中主次成分[J]. 冶金分析, 2009, 29(12): 21-24.
- [10] 张建,李福芝,张伟露.铁矿石类样品 X 荧光分析法的 实验研究[J]. 首钢科技, 1994, 5:31-34.
- [11] 李小莉.X 射线荧光光谱法测定铁矿石中铁等多种元 素[J]. 岩矿测试, 2008, 27(3): 229-231.
- [12] 高文红,陈学琴,张桂华,等.X 荧光玻璃熔片法分析铁

- [13] 中华人民共和国国家质量监督检验检疫总局 中国国家 标准化管理委员会. GB/ T6730. 62-2005 铁矿石钙、硅、 镁、钛、磷、锰、铝和钡含量的测定 波长色散 X 射线荧 光光谱法[S].北京:中国标准出版社,2000.
- [14] 吉昂, 陶光仪, 卓尚军, 等, X射线荧光光谱分析[M]. 北京:科学出版社,2003:204-208.
- [15] 岩石矿物分析编写组, 岩石矿物分析(第二分册)[M]. 北京:北京地质出版社,1991:318.
- [16] 张春兰. 铁矿石国家标准样品的研制[J]. 冶金分析, 2004, 24(Z): 285-289.
- [17] 程志中, 顾铁新, 范永贵, 等. 九个铁矿石标准物质研制 []]. 岩矿测试, 2010, 29(3): 305-308.
- [18] 全国标准物质管理委员会. 中华人民共和国标准物质 目录[M].北京:中国计量出版社,2007:90-94.
- [19] 乌静, 戴学谦, 刘伟, 等. X-射线荧光光谱法测定铁矾土 中二氧化硅、氧化铝和氧化铁[J]. 冶金分析, 2009, 29 (7): 44-48.
- [20] 李国会. X-射线荧光光谱法测定铬铁矿中主次量组分 [J]. 岩矿测试, 1999, 18(2): 131-134.
- [21] 谷松海, 宋义, 郭芬, 等. X-射线荧光光谱法同时测定铬 矿中主次成分[J].冶金分析,2008,28(4):16-19.
- [22] 袁家义, 吕振生, 姜云. X-射线荧光光谱熔融制样测定 钛铁矿中主次量组分[J]. 岩矿测试, 2007, 26(2): 158-159.
- [23] 吴小红,徐勇宏,高新华.一种用 X-射线荧光光谱法测 定硅酸盐及碳酸盐类样品中氧化物的通用方法[]].冶 金分析,2008,28(12):17-22.
- [24] 陈贺海, 李东, 任春生, 等. 铁矿石成分分析样品预处理 技术研究现状[J].中国矿业,2008,17(8):73-74.
- [25] 蒋薇, X 射线荧光光谱法测定钒钛磁铁矿成分[J]. 光 谱实验室,2005,22(5):940-942.
- [26] Eastell J, Willis J P. A Low Dilution Fusion Technique for the Analysis of Geological Samples. 1-MethodandT raceElement Analysis[J]. X- ray Spect rometry, 1990, 19:3.
- [27] Eastell J, Willis J P. A Low Dilution Fusion Technique for the Analysis of Geological Samples. 1-Major and Minor Element Analysis and the Use of Influence/Alpha Coefficients[J]. X-ray Spectrometroy, 1993, 22: 71.
- [28] 李小莉,李国会. X-射线荧光光谱法测定钛铁矿中的主 次量元素[C]. 帕纳科第 11 届 XRF 光谱仪用户论文 集,2011.256260.
- [29] 许鸿英, 张继丽, 张艳萍, 等. X-射线荧光光谱分析多矿 源铁矿石中9种成分[J]. 冶金分析, 2009, 29(10): 24-27.
- [30] 罗学辉, 陈占生, 陈雪, 等. X 射线荧光光谱法同时测定 铁矿石中主次组分[J]. 黄金科学技术, 2010, 18(5): (下转第31页) 123-124.

- [4] Liang P, Li Q, Liu R. Determination of trace molybdenum in biological and water samples by graphite furnace atomic absorption spectrometry after separation and preconcentration on immobilized titanium dioxide nanoparticles[J]. Microchim. Acta, 2009, 164(+2): 119-124.
- [5] 杜米芳. 电感耦合等离子体发射光谱法快速测定钼铁合 金中的钼[J]. 岩矿测试, 2010, 29(1):89-90.
- [6] Kalal H S, Panahi H A, Framarzi N, et al. New chelating resin for preconcentration and determination of molybdenum by inductive couple plasma atomic emission speetroscopy[J]. Int. J. Environ. Sci. Technol., 2011, 8(3): 501-512.
- [7] Pearce C R, Cohen A S, Parkinson I J. Quantitative Separation of Molybdenum and Rhenium from Geological Materials for Isotopic Determination by MG-ICP-MS
 [J]. Geostand. Geoanal. Res., 2009, 33(2): 219-229.
- [8] Reid H J, Basharnmakh A A, Goodall PS, et al. Determination of iodine and molybdenum in milk by quadrupole ICP-MS[J]. Talanta, 2008, 75(1): 189-197.
- [9] 冯先进, 屈太原. 电感耦合等离子体质谱法(ICPMS)最 新应用进展[J]. 中国无机分析化学, 2011, 1(1): 46-52.
- [10] Nakiboglu N, Tunay Z, Sahin I. Determination of molybdenum by adsorptive catalytic stripping voltammetry in thee presence of alizarin reds and persulphate[J]. Fr-
- (上接第26页)
- [31] 潘建华,赵桂兰.X 射线荧光光谱法同时测定铁矿石中 组分[J].青海科技,2010(3):116118.
- [32] 肖洪训. XRF 应用钴内标法测定铁矿石中全铁[J]. 湖 南冶金, 2002(1): 39-42.
- [33] 周公度.化学辞典[M].北京:化学工业出版社, 2004.
- [34] Kazuo K, Toshio W, K ichi N, et al. Determination of L ron Content in Iron Ore by Fluorescent X-Ray Speetroscopy-Effects of Cobalt Internal Standard in Binder-Briquetted Specimens [J]. Materials Transactions, 1980, 21(6): 390-398.
- [35] Bertin E P. X 射线光谱分析导论[M]. 高新华,译. 北 京: 地质出版社, 1981: 327-332.
- [36] 普旭力, 吴亚全, 王鸿辉, 等. X 射线荧光光谱法同时测 定铁矿石中主次量组分[J]. 岩矿测试, 2008, 27(5): 353-356.
- [37] 王一凌,曲月华,邓军华. X-射线荧光光谱分析法熔融 制样技术的探讨与应用[J]. 冶金分析, 2006, 26(12): 10-13.
- [38] 程进. 钴内标玻璃熔片 X 射线荧光光谱法分析铁矿石 中主、次元素[J]. 福建分析测试, 2009, 18(1): 46-49.
- [39] 李韶梅,杜彩霞,张慧鹃. X-射线荧光光谱法同时测定 海绵铁中主次中TFe,SiQ2,P,CaO,MgO[J]. 冶金分

esenius Environ. Bull. , 2011, 20(4): 939-944.

- [11] Neelam Y S, Dasari R, Prasad P R, et al. Determination of molybdenum(VI) by differential pulse polarographic technique using 4-(2-hydroxy phenyl ethaminodiol) benzene 1, 3-diol (42-HPEDB 1, 3, D) [J]. J. Saudi Chem. Soc., 2010, 14(2) :149-155.
- [12] Deng P H, Fei J J, Feng Y L. Trace determination of molybdenum by anodic adsorptive stripping voltammetry using a multi-walled carbon nanotubes modified carbon paste electrode[J]. Sens. Actuators: B, 2010, 148 (1):214-220.
- [13] Madrakian T, Afkhami A, Siri R, et al. Micelle mediated extraction and simultaneous spectrophotometric determination of vanadium (V) and molybdenum (VI) in plant foodstuff samples [J]. Food Chem., 2011, 127 (2):769-773.
- [14] Kumar A, Dass R. A rapid spectrophotometric method for the determination of molybdenum using ferron in industrial and environmental samples [J]. Indian J. Chem., Sect A, 2008, 47(10):1533-1536.
- [15] Madrakian T, Ghazizadeh F. Cloud-point preconcentration and spectrophotometric determination of trace amounts of molybdenum (VI) in steels and water samples[J]. J. H azard. Mater., 2008, 153(+2):695-700.

析,2008,30(11):11-14.

- [40] 杨新能,谢冲明.X射线荧光光谱法测定铁矿石中化学 成分[J].云南冶金,2008,37(6):58-60.
- [41] 边立槐, 田桂英, 杨觎. 元素钡对 X 射线荧光光谱法测
 定铁矿石中全铁的修正作用[J]. 光谱实验室, 2007, 24
 (5): 784 785.
- [42] 欧阳伦熬. X 射线荧光光谱法测定多种铁矿和硅酸盐 中主次量组分[J].岩矿测试, 2005, 24(4): 303-306.
- [43] 梁国立, 邓赛文, 吴晓军, 等. X 射线荧光光谱分析检出
 限问题的探讨与建议[J]. 岩矿测试, 2003, 22(4): 29-296.
- [44] 胡正阳, 邢宝华, 史厚义, 等. X-射线荧光光谱法测定烧结矿中 TFe 的不确定度评定[J]. 冶金分析, 2005, 25 (1): 82-83.
- [45] 任春生,张爱珍,应海松,等.XRF 法测定烧结铁矿中杂
 质元素的的不确定度评定[J].金属矿山,2008(1):76-79.
- [46] 中华人民共和国国国土资源部. DZ/T 01 30 2006 地质 矿产实验室测试质量管理规范[S].北京:中国标准出 版社: 2006.
- [47] 梁鹏山, 田敏. 铁矿中分析元素的 X 射线荧光光谱测

定[1].浙江冶金, 2000(4): 26-29. House: All rights reserved. http://www.cnki.net

31